Stabilizer formalism for operator quantum error correction

被引:231
作者
Poulin, D [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevLett.95.230504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
BACON D, QUANTPH0506023, P30401
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[4]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[5]  
GOTTESMAN D, 1997, THESIS CALTECH PADAD
[6]   Theory of decoherence-free fault-tolerant universal quantum computation [J].
Kempe, J ;
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 2001, 63 (04) :1-29
[7]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[8]   Resilient quantum computation [J].
Knill, E ;
Laflamme, R ;
Zurek, WH .
SCIENCE, 1998, 279 (5349) :342-345
[9]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[10]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528