Stabilizer formalism for operator quantum error correction

被引:231
作者
Poulin, D [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevLett.95.230504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
引用
收藏
页数:4
相关论文
共 24 条
[11]   Unified and generalized approach to quantum error correction [J].
Kribs, D ;
Laflamme, R ;
Poulin, D .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[12]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201
[13]   Decoherence-free subspaces for quantum computation [J].
Lidar, DA ;
Chuang, IL ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2594-2597
[14]  
NIELSEN MA, QUANTPH0506069
[15]   Description of a quantum convolutional code [J].
Ollivier, H ;
Tillich, JP .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[16]  
PRESKILL J, 1999, INTRO QUANTUM COMPUT, P213
[17]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[18]   SCHEME FOR REDUCING DECOHERENCE IN QUANTUM COMPUTER MEMORY [J].
SHOR, PW .
PHYSICAL REVIEW A, 1995, 52 (04) :R2493-R2496
[19]   Simple quantum error-correcting codes [J].
Steane, AM .
PHYSICAL REVIEW A, 1996, 54 (06) :4741-4751
[20]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797