A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array

被引:218
作者
Hung, PJ [1 ]
Lee, PJ [1 ]
Sabounchi, P [1 ]
Aghdam, N [1 ]
Lin, R [1 ]
Lee, LP [1 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
关键词
D O I
10.1039/b410743h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a high aspect ratio microfluidic device for culturing cells inside an array of microchambers with continuous perfusion of medium. The device was designed to provide a potential tool for cost-effective and automated cell culture. The single unit of the array consists of a circular microfluidic chamber 40 mum in height surrounded by multiple narrow perfusion channels 2 mum in height. The high aspect ratio (similar to20) between the microchamber and the perfusion channels offers advantages such as localization of the cells inside the microchamber as well as creating a uniform microenvironment for cell growth. Finite element methods were used to simulate flow profile and mass transfer of the device. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degreesC and was grown to confluency. The microfluidic cell culture array could potentially offer an affordable platform for a wide range of applications in high throughput cell-based screening, bioinformatics, synthetic biology, quantitative cell biology, and systems biology.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 21 条
[1]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[2]  
Attiya S, 2001, ELECTROPHORESIS, V22, P318, DOI 10.1002/1522-2683(200101)22:2<318::AID-ELPS318>3.0.CO
[3]  
2-G
[4]   PREDICTION OF RESPONSE TO DRUG-THERAPY OF CANCER - A REVIEW OF INVITRO ASSAYS [J].
BELLAMY, WT .
DRUGS, 1992, 44 (05) :690-708
[5]   Diffusion of gases in silicone polymers: Molecular dynamics simulations [J].
Charati, SG ;
Stern, SA .
MACROMOLECULES, 1998, 31 (16) :5529-5535
[6]   Identification of a novel coronavirus in patients with severe acute respiratory syndrome [J].
Drosten, C ;
Günther, S ;
Preiser, W ;
van der Werf, S ;
Brodt, HR ;
Becker, S ;
Rabenau, H ;
Panning, M ;
Kolesnikova, L ;
Fouchier, RAM ;
Berger, A ;
Burguière, AM ;
Cinatl, J ;
Eickmann, M ;
Escriou, N ;
Grywna, K ;
Kramme, S ;
Manuguerra, JC ;
Müller, S ;
Rickerts, V ;
Stürmer, M ;
Vieth, S ;
Klenk, HD ;
Osterhaus, ADME ;
Schmitz, H ;
Doerr, HW .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (20) :1967-1976
[7]   Cytosensor® Microphysiometer:: technology and recent applications [J].
Hafner, F .
BIOSENSORS & BIOELECTRONICS, 2000, 15 (3-4) :149-158
[8]   Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device [J].
Jeon, NL ;
Baskaran, H ;
Dertinger, SKW ;
Whitesides, GM ;
Van de Water, L ;
Toner, M .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :826-830
[9]   Microchip-based high-throughput screening analysis of combinatorial libraries [J].
Khandurina, J ;
Guttman, A .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2002, 6 (03) :359-366
[10]  
Kostov Y, 2001, BIOTECHNOL BIOENG, V72, P346, DOI 10.1002/1097-0290(20010205)72:3<346::AID-BIT12>3.0.CO