Structural DNA Nanotechnology: Growing Along with Nano Letters

被引:87
作者
Seeman, Nadrian C. [1 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
Sticky-ended cohesion; DNA origami; sequence-dependent nanomechanical devices; nanoscale assembly lines; designed 3D DNA crystals; SINGLE-STRANDED-DNA; CROSSOVER DNA; CONSTRUCTION; ARRAYS; MOLECULES; DESIGN; TILES;
D O I
10.1021/nl101262u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
During the past decade, the field of structural DNA nanotechnology has grown enormously, not only in the number of its participants but also qualitatively in its capabilities. A number of goals evident in 2001 have been achieved: These include the extension of self-assembled crystalline systems from 2D to 3D and the achievement of 2D algorithmic assembly. A variety of nanoscale walking devices have been developed. A key unanticipated development was the advent of DNA origami, which has vastly expanded the scale of addressable DNA structures. Nanomechanical devices have been incorporated into 2D arrays, and into 20 origami structures, as well, leading to capture systems and to a nanomechanical assembly line. DNA has been used to scaffold non-DNA species, so that one of its key goals has been achieved. Biological replication of DNA nanostructures with simple topologies has also been accomplished. The increase in the number of participants in the enterprise holds great promise for the coming decade.
引用
收藏
页码:1971 / 1978
页数:8
相关论文
共 52 条
[1]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[2]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[3]   Two computational primitives for algorithmic self-assembly: Copying and counting [J].
Barish, RD ;
Rothemund, PWK ;
Winfree, E .
NANO LETTERS, 2005, 5 (12) :2586-2592
[4]   An information-bearing seed for nucleating algorithmic self-assembly [J].
Barish, Robert D. ;
Schulman, Rebecca ;
Rothemund, Paul W. K. ;
Winfree, Erik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (15) :6054-6059
[5]   Circuits and programmable self-assembling DNA structures [J].
Carbone, A ;
Seeman, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12577-12582
[6]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[7]   Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate [J].
Ding, Baoquan ;
Seeman, Nadrian C. .
SCIENCE, 2006, 314 (5805) :1583-1585
[8]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+
[9]   DNA-nanotube-induced alignment of membrane proteins for NMR structure determination [J].
Douglas, Shawn M. ;
Chou, James J. ;
Shih, William M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (16) :6644-6648
[10]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418