Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1GPa

被引:346
作者
Barsoum, MW [1 ]
Zhen, T
Kalidindi, SR
Radovic, M
Murugaiah, A
机构
[1] Drexel Univ, Dept Mat Engn, Philadelphia, PA 19104 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dislocation-based deformation in crystalline solids is almost always plastic. Here we show that polycrystalline samples of Ti3SiC2 loaded cyclically at room temperature, in compression, to stresses up to 1 GPa, fully recover on the removal of the load, while dissipating about 25% (0.7 MJ m(-3)) of the mechanical energy. The stress-strain curves outline fully reversible, rate-independent, closed hysteresis loops that are strongly influenced by grain size, with the energy dissipated being significantly larger in the coarse-grained material. At temperatures greater than 1,000 degreesC, the loops are open, the response is strain-rate dependent, and cyclic hardening is observed. This hitherto unreported phenomenon is attributed to the reversible formation and annihilation of incipient kink bands at room-temperature deformation. At higher temperatures, the incipient kink bands dissociate and coalesce to form regular irreversible kink bands. The loss factor for Ti3SiC2 is higher than most woods, and comparable to polypropylene and nylon. The technological implications of having a stiff, lightweight machinable ceramic that can dissipate up to 25% of the mechanical energy per cycle are discussed.
引用
收藏
页码:107 / 111
页数:5
相关论文
共 25 条
[1]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[2]   Room-temperature ductile carbides [J].
Barsoum, MW ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (02) :363-369
[3]   Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 [J].
Barsoum, MW ;
Farber, L ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (07) :1727-1738
[4]   Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J].
Barsoum, MW ;
ElRaghy, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (07) :1953-1956
[5]   Influence of grain size and stacking-fault energy on deformation twinning in fcc metals [J].
El-Danaf, E ;
Kalidindi, SR ;
Doherty, RD .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (05) :1223-1233
[6]   Processing and mechanical properties of Ti3SiC2:: I, reaction path and microstructure evolution [J].
El-Raghy, T ;
Barsoum, MW .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (10) :2849-2854
[7]   Processing and mechanical properties of Ti3SiC2:: II, effect of grain size and deformation temperature [J].
El-Raghy, T ;
Barsoum, MW ;
Zavaliangos, A ;
Kalidindi, SR .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (10) :2855-2860
[8]   High-resolution transmission electron microscopy study of a low-angle boundary in plastically deformed Ti3SiC2 [J].
Farber, L ;
Levin, I ;
Barsoum, MW .
PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (04) :163-170
[9]   Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2 [J].
Finkel, P ;
Barsoum, MW ;
El-Raghy, T .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (04) :1701-1703
[10]   ON THE THEORY OF KINKING [J].
FRANK, FC ;
STROH, AN .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1952, 65 (394) :811-821