Iterative methods for the reconstruction of an inverse potential problem

被引:94
作者
Hettlich, F [1 ]
Rundell, W [1 ]
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
关键词
D O I
10.1088/0266-5611/12/3/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers an inverse potential problem which seeks to recover the shape of an obstacle separating two different densities by measurements of the potential. A representation for the domain derivative of the corresponding operator is established and this allows the investigation of several iterative methods for the solution of this ill-posed problem.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 15 条
[1]  
BAKUSHINSKII AB, 1992, COMP MATH MATH PHYS+, V21, P1353
[2]  
BINDER A, 1996, IN PRESS J INVERSE I
[3]   COMPUTING A STABLE LEAST SQUARES SOLUTION TO INVERSE PROBLEM FOR A PLANAR NEWTONIAN POTENTIAL [J].
CABAYAN, HS ;
BELFORD, GG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (01) :51-&
[4]  
Ciarlet P. G., 1990, HDB NUMERICAL ANAL, V1-9
[5]  
Colton D., 1983, INTEGRAL EQUATION ME
[6]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[7]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[8]  
HANKE M, 1995, VIBRATION CONTROL AN, V3, P909
[9]   FRECHET DERIVATIVES IN INVERSE OBSTACLE SCATTERING [J].
HETTLICH, F .
INVERSE PROBLEMS, 1995, 11 (02) :371-382
[10]  
ISAKOV V., 1990, Mathematical Surveys and Monographs, V34