Generalised Heisenberg relations for quantum statistical estimation

被引:15
作者
Brody, DC
Hughston, LP
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[2] Merrill Lynch Int, London EC2Y 9LY, England
[3] Univ London Kings Coll, London WC2R 2LS, England
关键词
D O I
10.1016/S0375-9601(97)00788-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric framework for quantum statistical estimation is used to establish a series of corrections to the Heisenberg uncertainty relations for canonically conjugate variables. These results apply when the true state of the system belongs to a one-parameter family of unitarily related states, and we are required to estimate the value of the parameter. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 13 条
[1]  
Bhattacharyya A, 1947, SANKHYA, V8, P201
[2]  
Bhattacharyya A, 1948, SANKHYA, V8, P315
[3]  
Bhattacharyya A, 1946, SANKHYA, V8, P1
[4]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[5]   Geometry of quantum statistical inference [J].
Brody, DC ;
Hughston, LP .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2851-2854
[6]  
BRODY DC, 1997, GEOMETRIC ISSUES FDN
[7]  
BRODY DC, ICTP959642
[8]   INFORMATION THEORETIC INEQUALITIES [J].
DEMBO, A ;
COVER, TM ;
THOMAS, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1501-1518
[9]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[10]  
HOLEVO AS, 1982, PROBABILISTIC STAT A