In Vitro Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity

被引:130
作者
Chutinimitkul, Salin
van Riel, Debby
Munster, Vincent J.
van den Brand, Judith M. A.
Rimmelzwaan, Guus F.
Kuiken, Thijs
Osterhaus, Albert D. M. E.
Fouchier, Ron A. M.
de Wit, Emmie
机构
[1] Erasmus MC, Dept Virol, NL-3000 CA Rotterdam, Netherlands
[2] Erasmus MC, Natl Influenza Ctr, NL-3000 CA Rotterdam, Netherlands
关键词
SINGLE AMINO-ACID; SUBSTRATE-SPECIFICITY; RESPIRATORY-TRACT; MOLECULAR-BASIS; HIGH VIRULENCE; HEMAGGLUTININ; BINDING; NEURAMINIDASE; PATHOGENICITY; TRANSMISSION;
D O I
10.1128/JVI.02737-09
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, alpha 2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions in hemagglutinin (HA) of clinical HPAI H5N1 isolates or that were introduced experimentally that resulted in an increased, but not exclusive, binding of these virus strains to alpha 2,6-linked SA. We introduced all previously described amino acid substitutions and combinations thereof into a single genetic background, influenza virus A/Indonesia/5/05 HA, and tested the receptor specificity of these 27 mutant viruses. The attachment pattern to ferret and human tissues of the upper and lower respiratory tract of viruses with alpha 2,6-linked SA receptor preference was then determined and compared to the attachment pattern of a human influenza A virus (H3N2). At least three mutant viruses showed an attachment pattern to the human respiratory tract similar to that of the human H3N2 virus. Next, the replication efficiencies of these mutant viruses and the effects of three different neuraminidases on virus replication were determined. These data show that influenza virus A/Indonesia/5/05 potentially requires only a single amino acid substitution to acquire human receptor specificity, while at the same time remaining replication competent, thus suggesting that the pandemic threat posed by HPAI H5N1 is far from diminished.
引用
收藏
页码:6825 / 6833
页数:9
相关论文
共 41 条
[1]   An avian influenza H5N1 virus that binds to a human-type receptor [J].
Auewarakul, Prasert ;
Suptawiwat, Ornpreya ;
Kongchanagul, Alita ;
Sangma, Chak ;
Suzuki, Yasuo ;
Ungchusak, Kumnuan ;
Louisirirotchanakul, Suda ;
Lerdsamran, Hatairat ;
Pooruk, Phisanu ;
Thitithanyanont, Arunee ;
Pittayawonganon, Chakrarat ;
Guo, Chao-Tan ;
HiramatSU, Hiroaki ;
Jampangern, Wipawee ;
Chunsutthiwat, Supamit ;
Puthavathanal, Pilaipan .
JOURNAL OF VIROLOGY, 2007, 81 (18) :9950-9955
[2]   Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium [J].
Ayora-Talavera, Guadalupe ;
Shelton, Holly ;
Scull, Margaret A. ;
Ren, Junyuan ;
Jones, Ian M. ;
Pickles, Raymond J. ;
Barclay, Wendy S. .
PLOS ONE, 2009, 4 (11)
[3]   Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy [J].
Banks, J ;
Speidel, ES ;
Moore, E ;
Plowright, L ;
Piccirillo, A ;
Capua, I ;
Cordioli, P ;
Fioretti, A ;
Alexander, DJ .
ARCHIVES OF VIROLOGY, 2001, 146 (05) :963-973
[4]   THE N2 NEURAMINIDASE OF HUMAN INFLUENZA-VIRUS HAS ACQUIRED A SUBSTRATE-SPECIFICITY COMPLEMENTARY TO THE HEMAGGLUTININ RECEPTOR SPECIFICITY [J].
BAUM, LG ;
PAULSON, JC .
VIROLOGY, 1991, 180 (01) :10-15
[5]   Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin [J].
Chandrasekaran, Aarthi ;
Srinivasan, Aravind ;
Raman, Rahul ;
Viswanathan, Karthik ;
Raguram, S. ;
Tumpey, Terrence M. ;
Sasisekharan, V. ;
Sasisekharan, Ram .
NATURE BIOTECHNOLOGY, 2008, 26 (01) :107-113
[6]   RECEPTOR SPECIFICITY IN HUMAN, AVIAN, AND EQUINE H2 AND H3 INFLUENZA-VIRUS ISOLATES [J].
CONNOR, RJ ;
KAWAOKA, Y ;
WEBSTER, RG ;
PAULSON, JC .
VIROLOGY, 1994, 205 (01) :17-23
[7]   Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team [J].
Dawood, Fatimah S. ;
Jain, Seema ;
Finelli, Lyn ;
Shaw, Michael W. ;
Lindstrom, Stephen ;
Garten, Rebecca J. ;
Gubareva, Larisa V. ;
Xu, Xiyan ;
Bridges, Carolyn B. ;
Uyeki, Timothy M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (25) :2605-2615
[8]   Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments [J].
de Wit, E ;
Spronken, MIJ ;
Bestebroer, TM ;
Rimmelzwaan, GF ;
Osterhaus, ADME ;
Fouchier, RAM .
VIRUS RESEARCH, 2004, 103 (1-2) :155-161
[9]   Pathogenicity of highly pathogenic avian influenza virus in mammals [J].
de Wit, Emmie ;
Kawaoka, Yoshihiro ;
de Jong, Menno D. ;
Fouchier, Ron A. M. .
VACCINE, 2008, 26 :D54-D58
[10]   Evolution of the receptor binding phenotype of influenza A (H5) viruses [J].
Gambaryan, A ;
Tuzikov, A ;
Pazynina, G ;
Bovin, N ;
Balish, A ;
Klimov, A .
VIROLOGY, 2006, 344 (02) :432-438