Synchronization of chaos in coupled systems

被引:62
作者
Zhan, M [1 ]
Hu, G
Yang, JZ
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.2963
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stability of synchronous chaos of coupled oscillators with diffusive and gradient couplings is investigated. The stability boundaries of all transverse modes can be simultaneously drawn by justifying the boundary of a single mode, according to a scaling relation. Therefore, the distribution of stable and unstable regions can be explicitly shown in control parameter space. Bifurcations through different unstable modes, leading to different spatial orders, are analyzed.
引用
收藏
页码:2963 / 2966
页数:4
相关论文
共 16 条
[1]   SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4185-4188
[2]   EXPERIMENTAL AND NUMERICAL EVIDENCE FOR RIDDLED BASINS IN COUPLED CHAOTIC SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW LETTERS, 1994, 73 (26) :3528-3531
[3]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885
[4]   Hopf bifurcation from chaos and generalized winding numbers of critical modes [J].
Hu, G ;
Yang, JZ ;
Ma, WQ ;
Xiao, JH .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5314-5317
[5]  
Hu G, 1999, COMMUN THEOR PHYS, V31, P99
[6]   Instability and controllability of linearly coupled oscillators: Eigenvalue analysis [J].
Hu, G ;
Yang, JZ ;
Liu, WJ .
PHYSICAL REVIEW E, 1998, 58 (04) :4440-4453
[7]   Riddling bifurcation in chaotic dynamical systems [J].
Lai, YC ;
Grebogi, C ;
Yorke, JA ;
Venkataramani, SC .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :55-58
[8]   Transient periodic rotating waves and fast propagation of synchronization in linear arrays of chaotic systems [J].
Matias, MA ;
Guemez, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (19) :4124-4127
[9]   Master stability functions for synchronized coupled systems [J].
Pecora, LM ;
Carroll, TL .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2109-2112
[10]   Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems [J].
Pecora, LM .
PHYSICAL REVIEW E, 1998, 58 (01) :347-360