Synchronization of chaos in coupled systems

被引:62
作者
Zhan, M [1 ]
Hu, G
Yang, JZ
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.2963
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stability of synchronous chaos of coupled oscillators with diffusive and gradient couplings is investigated. The stability boundaries of all transverse modes can be simultaneously drawn by justifying the boundary of a single mode, according to a scaling relation. Therefore, the distribution of stable and unstable regions can be explicitly shown in control parameter space. Bifurcations through different unstable modes, leading to different spatial orders, are analyzed.
引用
收藏
页码:2963 / 2966
页数:4
相关论文
共 16 条
[11]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[12]   The largest Lyapunov exponent of coupled map lattice systems [J].
Shi, PL ;
Hu, G ;
Xu, LM .
ACTA PHYSICA SINICA, 2000, 49 (01) :24-29
[13]  
SHI PL, 2000, ACTA PHYS SINICA, V41, P1
[14]   Bubbling transition [J].
Venkataramani, SC ;
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW E, 1996, 54 (02) :1346-1360
[15]   Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents [J].
Yang, JZ ;
Hu, G ;
Xiao, JH .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :496-499
[16]   Alternating locking ratios in imperfect phase synchronization [J].
Zaks, MA ;
Park, EH ;
Rosenblum, MG ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4228-4231