Potential energy functions for protein design

被引:101
作者
Boas, F. Edward [1 ]
Harbury, Pehr B. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.sbi.2007.03.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Different potential energy functions have predominated in protein dynamics simulations, protein design calculations, and protein structure prediction. Clearly, the same physics applies in all three cases. The differences in potential energy functions reflect differences in how the calculations are performed. With improvements in computer power and algorithms, the same potential energy function should be applicable to all three problems. In this review, we examine energy functions currently used for protein design, and look to the molecular mechanics field for advances that could be used in the next generation of design algorithms. In particular, we focus on improved models of the hydrophobic effect, polarization and hydrogen bonding.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 47 条
[31]   Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: Implications for protein design and structural genomics [J].
Looger, LL ;
Hellinga, HW .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :429-445
[32]   All-atom empirical potential for molecular modeling and dynamics studies of proteins [J].
MacKerell, AD ;
Bashford, D ;
Bellott, M ;
Dunbrack, RL ;
Evanseck, JD ;
Field, MJ ;
Fischer, S ;
Gao, J ;
Guo, H ;
Ha, S ;
Joseph-McCarthy, D ;
Kuchnir, L ;
Kuczera, K ;
Lau, FTK ;
Mattos, C ;
Michnick, S ;
Ngo, T ;
Nguyen, DT ;
Prodhom, B ;
Reiher, WE ;
Roux, B ;
Schlenkrich, M ;
Smith, JC ;
Stote, R ;
Straub, J ;
Watanabe, M ;
Wiórkiewicz-Kuczera, J ;
Yin, D ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (18) :3586-3616
[33]   Empirical force fields for biological macromolecules: Overview and issues [J].
Mackerell, AD .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (13) :1584-1604
[34]   A polarizable force field and continuum solvation methodology for modeling of protein-ligand interactions [J].
Maple, JR ;
Cao, YX ;
Damm, WG ;
Halgren, TA ;
Kaminski, GA ;
Zhang, LY ;
Friesner, RA .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (04) :694-715
[35]   One- and two-body decomposable Poisson-Boltzmann methods for protein design calculations [J].
Marshall, SA ;
Vizcarra, CL ;
Mayo, SL .
PROTEIN SCIENCE, 2005, 14 (05) :1293-1304
[36]  
Mohanty D, 1999, PROTEINS, V35, P447, DOI 10.1002/(SICI)1097-0134(19990601)35:4<447::AID-PROT8>3.3.CO
[37]  
2-F
[38]  
Morozov AV, 2005, ADV PROTEIN CHEM, V72, P1, DOI 10.1016/S0065-3233(05)72001-5
[39]   Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations [J].
Morozov, AV ;
Kortemme, T ;
Tsemekhman, K ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (18) :6946-6951
[40]   Energy functions for protein design: Adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity [J].
Pokala, N ;
Handel, TM .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 347 (01) :203-227