The N-glycans of recombinant glycoproteins expressed in insect cells mainly contain high mannose or tri-mannose structures, which are truncated forms of the sialylated N-glycans found in mammalian cells. Because asialylated glycoproteins have a shorter half-life in blood circulation, we investigated if sialylated therapeutic glycoprotein can be produced from insect cells by enhancing the N-glycosylation machinery of the cells. We co-expressed in two insect cell lines, Sf9 and Ea4, the human alpha1-antitrypsin (halpha1AT) protein with a series of key glycosyltransferases, including GlcNAc transferase II (GnT2), beta1,4-galactosyltransferase (beta14GT), and alpha2,6-sialyltransferase (alpha26ST) by a single recombinant baculovirus. We demonstrated that the enhancement of N-glycosylation is cell type-dependent and is more efficient in Ea4 than Sf9 cells. Glycan analysis indicated that sialylated halpha1AT proteins were produced in Ea4 insect cells expressing the above-mentioned exogenous glycosyltransferases. Therefore, our expression strategy may simplify the production of humanized therapeutic glycoproteins by improving the N-glycosylation pathway in specific insect cells, with an ensemble of exogenous glycosyltransferases in a single recombinant baculovirus. (C) 2003 Elsevier Science B.V. All rights reserved.