Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems

被引:32
作者
Broer, HW [1 ]
Lunter, GA [1 ]
Vegter, G [1 ]
机构
[1] Univ Groningen, Dept Math & Comp Sci, NL-9700 AV Groningen, Netherlands
关键词
resonance; spatio-temporal symmetry; Hamiltonian bifurcations; normal form theory; equivariant singularity theory;
D O I
10.1016/S0167-2789(97)00202-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-pendulum system near resonance, where it leads to integrable approximations of the iso-energetic Poincare map. The novelty of our approach is that we obtain information on the whole dynamics, regarding the (quasi-) periodic solutions, the global configuration of their invariant manifolds, and bifurcations of these.
引用
收藏
页码:64 / 80
页数:17
相关论文
共 23 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], DYN REPORT
[3]  
Arnold V.I., 1989, MATH METHODS CLASSIC, Vsecond
[4]  
BRIDGES TJ, 1991, LECT NOTES MATH
[5]  
BROCKER T, 1975, LMS LECT NOTE SERIES, V17
[6]   A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION [J].
BROER, HW ;
CHOW, SN ;
KIM, Y ;
VEGTER, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (03) :389-432
[7]  
BROER HW, UNPUB RESONANCES SPR
[8]  
BROER HW, 1995, NORMAL FORMS HOMOCLI, P1
[9]  
BROER HW, 1979, THESIS U GRONINGEN
[10]  
DAMON J, 1995, PROGR NONLINEAR DIFF, V15