Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion

被引:346
作者
Betti, R [1 ]
Goncharov, VN [1 ]
McCrory, RL [1 ]
Verdon, CP [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.872802
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple procedure is developed to determine the Froude number Fr, the effective power index for thermal conduction nu, the ablation-front thickness L-0, the ablation velocity V-a, and the acceleration g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric profiles of Kull and Anisimov [Phys. Fluids 29, 2067 (1986)]. These quantities are then used to calculate the growth rate of the ablative Rayleigh-Taylor instability using the theory developed by Goncharov et al. [Phys. Plasmas 3, 4665 (1996)]. The complicated expression of the growth rate (valid for arbitrary Froude numbers) derived by Goncharov et al, is simplified by using reasonably accurate fitting formulas. (C) 1998 American Institute of Physics.
引用
收藏
页码:1446 / 1454
页数:9
相关论文
共 26 条
[1]   Ablative stabilization of short wavelength Rayleigh-Taylor instability [J].
Atzeni, S .
NUCLEAR FUSION, 1996, 36 (01) :69-74
[2]   SELF-CONSISTENT CUTOFF WAVE-NUMBER OF THE ABLATIVE RAYLEIGH-TAYLOR IN STABILITY [J].
BETTI, R ;
GONCHAROV, VN ;
MCCRORY, RL ;
VERDON, CP .
PHYSICS OF PLASMAS, 1995, 2 (10) :3844-3851
[3]   Self-consistent stability analysis of ablation fronts in inertial confinement fusion [J].
Betti, R ;
Goncharov, VN ;
McCrory, RL ;
Sorotokin, P ;
Verdon, CP .
PHYSICS OF PLASMAS, 1996, 3 (05) :2122-2128
[4]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[5]   STABILIZATION OF THE RAYLEIGH-TAYLOR INSTABILITY BY CONVECTION IN SMOOTH DENSITY GRADIENT - WENTZEL-KRAMERS-BRILLOUIN ANALYSIS [J].
BUDKO, AB ;
LIBERMAN, MA .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (11) :3499-3506
[6]  
Delettrez J., 1976, 36 LAB LAS EN
[7]   Self-consistent stability analysis of ablation fronts with small Froude numbers [J].
Goncharov, VN ;
Betti, R ;
McCrory, RL ;
Verdon, CP .
PHYSICS OF PLASMAS, 1996, 3 (12) :4665-4676
[8]   Self-consistent stability analysis of ablation fronts with large Froude numbers [J].
Goncharov, VN ;
Betti, R ;
McCrory, RL ;
Sorotokin, P ;
Verdon, CP .
PHYSICS OF PLASMAS, 1996, 3 (04) :1402-1414
[9]   A REVIEW OF THE ABLATIVE STABILIZATION OF THE RAYLEIGH-TAYLOR INSTABILITY IN REGIMES RELEVANT TO INERTIAL CONFINEMENT FUSION [J].
KILKENNY, JD ;
GLENDINNING, SG ;
HAAN, SW ;
HAMMEL, BA ;
LINDL, JD ;
MUNRO, D ;
REMINGTON, BA ;
WEBER, SV ;
KNAUER, JP ;
VERDON, CP .
PHYSICS OF PLASMAS, 1994, 1 (05) :1379-1389
[10]   ABLATIVE STABILIZATION IN THE INCOMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY [J].
KULL, HJ ;
ANISIMOV, SI .
PHYSICS OF FLUIDS, 1986, 29 (07) :2067-2075