Regulation of lymphoid enhancer factor 1/T-Cell factor by mitogen-activated protein kinase-related nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling

被引:174
作者
Ishitani, T
Ninomiya-Tsuji, J
Matsumoto, K [1 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Dept Mol Biol, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Japan Sci & Technol Corp, CREST, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1128/MCB.23.4.1379-1389.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Wnt/beta-catenin signaling pathway regulates many developmental processes by modulating gene expression. Wnt signaling induces the stabilization of cytosolic beta-catenin, which then associates with lymphoid enhancer factor and T-cell factor (LEF-1/TCF) to form a transcription complex that activates Wnt target genes. Previously, we have shown that a specific mitogen-activated protein (MAP) kinase pathway involving the MAP kinase kinase kinase TAK1 and MAP kinase-related Nemo-like kinase (NLK) suppresses Wnt signaling. In this study, we investigated the relationships among NLK, beta-catenin, and LEF-1/TCF. We found that NLK interacts directly with LEF-1/TCF and indirectly with beta-catenin via LEF-1/TCF to form a complex. NLK phosphorylates LEF-1/TCF on two serine/threonine residues located in its central region. Mutation of both residues to alanine enhanced LEF-1 transcriptional activity and rendered it resistant to inhibition by NLK. Phosphorylation of TCF-4 by NLK inhibited DNA binding by the beta-catenin-TCF-4 complex. However, this inhibition was abrogated when a mutant form of TCF-4 was used in which both threonines were replaced with valines. These results suggest that NLK phosphorylation on these sites contributes to the down-regulation of LEF-1/TCF transcriptional activity.
引用
收藏
页码:1379 / 1389
页数:11
相关论文
共 36 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[3]   Transcription - Signal transduction and the control of gene expression [J].
Brivanlou, AH ;
Darnell, JE .
SCIENCE, 2002, 295 (5556) :813-818
[4]   pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila [J].
Brunner, E ;
Peter, O ;
Schweizer, L ;
Basler, K .
NATURE, 1997, 385 (6619) :829-833
[5]  
CARDIGAN KM, 1997, GENE DEV, V11, P3286
[6]   Drosophila Tcf and Groucho interact to repress Wingless signalling activity [J].
Cavallo, RA ;
Cox, RT ;
Moline, MM ;
Roose, J ;
Polevoy, GA ;
Clevers, H ;
Peifer, M ;
Bejsovec, A .
NATURE, 1998, 395 (6702) :604-608
[7]  
HERMAN MA, 1994, DEVELOPMENT, V120, P1035
[8]   THE C-ELEGANS GENE LIN-44, WHICH CONTROLS THE POLARITY OF CERTAIN ASYMMETRIC CELL DIVISIONS, ENCODES A WNT PROTEIN AND ACTS CELL NONAUTONOMOUSLY [J].
HERMAN, MA ;
VASSILIEVA, LL ;
HORVITZ, HR ;
SHAW, JE ;
HERMAN, RK .
CELL, 1995, 83 (01) :101-110
[9]  
Herman MA, 2001, DEVELOPMENT, V128, P581
[10]   The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing [J].
Hovanes, K ;
Li, TWH ;
Waterman, ML .
NUCLEIC ACIDS RESEARCH, 2000, 28 (09) :1994-2003