The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex

被引:112
作者
Melville, MW
McClellan, AJ
Meyer, AS
Darveau, A
Frydman, J [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Univ Laval, Dept Biochim & Microbiol, CREFSIP, St Foy, PQ G1K 7P4, Canada
关键词
D O I
10.1128/MCB.23.9.3141-3151.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The degree of cooperation and redundancy between different chaperones is an important problem in understanding how proteins fold in the cell. Here we use the yeast Saccharomyces cerevisiae as a model system to examine in vivo the chaperone requirements for assembly of the von Hippel-Lindau protein (VHL)-elongin BC (VBC) tumor suppressor complex. VHL and elongin BC expressed in yeast assembled into a correctly folded VBC complex that resembles the complex from mammalian cells. Unassembled VHL did not fold and remained associated with the cytosolic chaperones Hsp70 and TRiC/CCT, in agreement with results from mammalian cells. Analysis of the folding reaction in yeast strains carrying conditional chaperone mutants indicates that incorporation of VHL into VBC requires both functional TRiC and Hsp70. VBC assembly was defective in cells carrying either a temperature-sensitive ssa1 gene as their sole source of cytosolic Hsp70/SSA function or a temperature-sensitive mutation in CCT4, a subunit of the TRiC/CCT complex. Analysis of the VHL-chaperone interactions in these strains revealed that the cct4ts mutation decreased binding to TRiC but did not affect the interaction with Hsp70. In contrast, loss of Hsp70 function disrupted the interaction of VHL with both Hsp70 and TRiC. We conclude that, in vivo, folding of some polypeptides requires the cooperation of Hsp70 and TRiC and that Hsp70 acts to promote substrate binding to TRiC.
引用
收藏
页码:3141 / 3151
页数:11
相关论文
共 48 条
[1]  
[Anonymous], 1992, CURRENT PROTOCOLS MO
[2]   Molecular cloning of DNAs encoding the regulatory subunits of elongin from Saccharomyces cerevisiae and Drosophila melanogaster [J].
Aso, T ;
Conrad, MN .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 241 (02) :334-340
[3]   INCREASED PROPORTION OF B-CELL HYBRIDOMAS SECRETING MONOCLONAL-ANTIBODIES OF DESIRED SPECIFICITY IN CULTURES CONTAINING MACROPHAGE-DERIVED HYBRIDOMA GROWTH-FACTOR (IL-6) [J].
BAZIN, R ;
LEMIEUX, R .
JOURNAL OF IMMUNOLOGICAL METHODS, 1989, 116 (02) :245-249
[4]  
Becker J, 1996, MOL CELL BIOL, V16, P4378
[5]  
BOORSTEIN WR, 1994, J MOL EVOL, V38, P1
[6]   Solution structure and dynamics of yeast elongin C in complex with a von Hippel-Lindau peptide [J].
Botuyan, MV ;
Mer, G ;
Yi, GS ;
Koth, CM ;
Case, DA ;
Edwards, AM ;
Chazin, WJ ;
Arrowsmith, CH .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (01) :177-186
[7]   Getting newly synthesized proteins into shape [J].
Bukau, B ;
Deuerling, E ;
Pfund, C ;
Craig, EA .
CELL, 2000, 101 (02) :119-122
[8]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[9]   von Hippel-Lindau disease: Clinical and molecular perspectives [J].
Clifford, SC ;
Maher, ER .
ADVANCES IN CANCER RESEARCH, VOL 82, 2001, 82 :85-105
[10]   Trigger factor and DnaK cooperate in folding of newly synthesized proteins [J].
Deuerling, E ;
Schulze-Specking, A ;
Tomoyasu, T ;
Mogk, A ;
Bukau, B .
NATURE, 1999, 400 (6745) :693-696