From random matrices to stochastic operators

被引:72
作者
Edelman, Alan
Sutton, Brian D.
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Randolph Macon Coll, Dept Math, Ashland, VA 23005 USA
关键词
random matrices; random eigenvalues; stochastic differential operators;
D O I
10.1007/s10955-006-9226-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose that classical random matrix models are properly viewed as finite difference schemes for stochastic differential operators. Three particular stochastic operators commonly arise, each associated with a familiar class of local eigenvalue behavior. The stochastic Airy operator displays soft edge behavior, associated with the Airy kernel. The stochastic Bessel operator displays hard edge behavior, associated with the Bessel kernel. The article concludes with suggestions for a stochastic sine operator, which would display bulk behavior, associated with the sine kernel.
引用
收藏
页码:1121 / 1165
页数:45
相关论文
共 24 条
[1]   Matrix models for beta ensembles [J].
Dumitriu, I ;
Edelman, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5830-5847
[2]   Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics [J].
Dumitriu, L ;
Edelman, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1083-1099
[3]  
EDELMAN A, 2003, SIAM C APPL LIN ALG
[4]  
EDELMAN A, FOUND COMPUT MATH
[5]   THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES [J].
FORRESTER, PJ .
NUCLEAR PHYSICS B, 1993, 402 (03) :709-728
[6]  
FORRESTER PJ, 2000, PAINLEVE TRANSCENDEN
[7]  
Jimbo M., 1980, Physica D, V1D, P80, DOI 10.1016/0167-2789(80)90006-8
[8]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[9]   On the distribution of the largest eigenvalue in principal components analysis [J].
Johnstone, IM .
ANNALS OF STATISTICS, 2001, 29 (02) :295-327
[10]   Matrix models for circular ensembles [J].
Killip, R ;
Nenciu, I .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (50) :2665-2701