Strongly localized modes in discrete systems with quadratic nonlinearity

被引:42
作者
Darmanyan, S
Kobyakov, A
Lederer, F
机构
[1] Univ Jena, Inst Solid State Theory & Theoret Opt, D-07743 Jena, Germany
[2] Russian Acad Sci, Inst Spect, Troitsk 142092, Moscow Region, Russia
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.2344
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report the existence of bright and dark families of strongly localized modes in discrete systems with a quadratic nonlinearity. It is shown analytically and confirmed numerically that the second-harmonic field may form stable bound states with fundamental fields of different topologies. Furthermore, we found different types of solutions having analogs neither in other discrete models nor in continuum models and studied the background stability of dark modes.
引用
收藏
页码:2344 / 2349
页数:6
相关论文
共 32 条
[21]   DARK SOLITONS IN DISCRETE LATTICES [J].
KIVSHAR, YS ;
KROLIKOWSKI, W ;
CHUBYKALO, OA .
PHYSICAL REVIEW E, 1994, 50 (06) :5020-5032
[22]   PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES [J].
KIVSHAR, YS ;
CAMPBELL, DK .
PHYSICAL REVIEW E, 1993, 48 (04) :3077-3081
[23]   Cascading of quadratic nonlinearities: An analytical study [J].
Kobyakov, A ;
Lederer, F .
PHYSICAL REVIEW A, 1996, 54 (04) :3455-3471
[24]   Soliton-based optical switching in waveguide arrays [J].
Krolikowski, W ;
Kivshar, YS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (05) :876-887
[25]   OBSERVATION OF NONLINEAR LOCALIZED MODES IN AN ELECTRICAL LATTICE [J].
MARQUIE, P ;
BILBAULT, JM ;
REMOISSENET, M .
PHYSICAL REVIEW E, 1995, 51 (06) :6127-6133
[26]   ASYMPTOTIC SOLUTIONS FOR LOCALIZED VIBRATIONAL-MODES IN STRONGLY ANHARMONIC PERIODIC-SYSTEMS [J].
PAGE, JB .
PHYSICAL REVIEW B, 1990, 41 (11) :7835-7838
[27]   KINK DYNAMICS IN THE HIGHLY DISCRETE SINE-GORDON SYSTEM [J].
PEYRARD, M ;
KRUSKAL, MD .
PHYSICA D, 1984, 14 (01) :88-102
[28]   One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides [J].
Schiek, R ;
Baek, Y ;
Stegeman, GI .
PHYSICAL REVIEW E, 1996, 53 (01) :1138-1141
[29]   BINDING-ENERGY VERSUS NONLINEARITY FOR A SMALL STATIONARY SOLITON [J].
SCOTT, AC ;
MACNEIL, L .
PHYSICS LETTERS A, 1983, 98 (03) :87-88
[30]   INTRINSIC LOCALIZED MODES IN ANHARMONIC CRYSTALS [J].
SIEVERS, AJ ;
TAKENO, S .
PHYSICAL REVIEW LETTERS, 1988, 61 (08) :970-973