Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene

被引:142
作者
Aitken, Zachary H. [1 ]
Huang, Rui [1 ]
机构
[1] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
EPITAXIAL GRAPHENE; SUSPENDED GRAPHENE; SHEETS; FILMS;
D O I
10.1063/1.3437642
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene monolayers supported on oxide substrates have been demonstrated with superior charge mobility and thermal transport for potential device applications. Morphological corrugation can strongly influence the transport properties of the supported graphene. In this paper, we theoretically analyze the morphological stability of a graphene monolayer on an oxide substrate, subject to van der Waals interactions and in-plane mismatch strains. First, we define the equilibrium separation and the interfacial adhesion energy as the two key parameters that characterize the van der Waals interaction between a flat monolayer and a flat substrate surface. By a perturbation analysis, a critical compressive mismatch strain is predicted, beyond which the graphene monolayer undergoes strain-induced instability, forming corrugations with increasing amplitude and decreasing wavelength on a perfectly flat surface. When the substrate surface is not perfectly flat, the morphology of graphene depends on both the amplitude and the wavelength of surface corrugation. A transition from conformal (corrugated) to nonconformal (flat) morphology is predicted. The effects of substrate surface corrugation on the equilibrium mean thickness of the supported graphene and the interfacial adhesion energy are analyzed. Furthermore, by considering both the substrate surface corrugation and the mismatch strain, it is found that, while a tensile mismatch strain reduces the corrugation amplitude of graphene, a corrugated substrate surface promotes strain-induced instability under a compressive strain. These theoretical results suggest possible means to control the morphology of supported graphene monolayers by substrate surface patterning and strain engineering. (C) 2010 American Institute of Physics. [doi:10.1063/1.3437642]
引用
收藏
页数:10
相关论文
共 34 条
[1]   Roughness of undoped graphene and its short-range induced gauge field [J].
Abedpour, N. ;
Neek-Amal, M. ;
Asgari, Reza ;
Shahbazi, F. ;
Nafari, N. ;
Tabar, M. Reza Rahimi .
PHYSICAL REVIEW B, 2007, 76 (19)
[2]  
[Anonymous], 1992, INTERMOLECULAR SURFA
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]  
Bets KV, 2009, NANO RES, V2, P161, DOI [10.1007/s12274-009-9015-x, 10.1007/S12274-009-9015-X]
[7]   Printed graphene circuits [J].
Chen, Jian-Hao ;
Ishigami, Masa ;
Jang, Chaun ;
Hines, Daniel R. ;
Fuhrer, Michael S. ;
Williams, Ellen D. .
ADVANCED MATERIALS, 2007, 19 (21) :3623-3627
[8]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[9]   Spectral gap induced by structural corrugation in armchair graphene nanoribbons [J].
Costamagna, S. ;
Hernandez, O. ;
Dobry, A. .
PHYSICAL REVIEW B, 2010, 81 (11)
[10]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861