Spectral gap induced by structural corrugation in armchair graphene nanoribbons

被引:22
作者
Costamagna, S. [1 ]
Hernandez, O. [1 ]
Dobry, A. [1 ]
机构
[1] Univ Nacl Rosario, Consejo Nacl Invest Cient & Tecn, Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
关键词
D O I
10.1103/PhysRevB.81.115421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNRs). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DPs) move away from each other. Futhermore, the Fermi velocity v(F) decreases when the rippling increases. Regarding the AGNRs, whose metallic behavior depends on their widths, we analyze, in particular, the case of the zero-gap band-structure AGNRs. By solving the Dirac equation with adequate boundary conditions we show that, due to the shifting of the DP, a gap opens up in the spectra. This gap scales with the square of the rate between the height and the wavelength of the deformation. We confirm this prediction by an exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the nonequilibrium Green's function technique, vanishes when the gap opens up. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR, independently of their widths.
引用
收藏
页数:7
相关论文
共 22 条
[1]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[2]  
Bowick MJ, 2001, PHYS REP, V344, P255, DOI 10.1016/S0370-1573(00)00128-9
[3]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Charge Transport in Disordered Graphene-Based Low Dimensional Materials [J].
Cresti, Alessandro ;
Nemec, Norbert ;
Biel, Blanca ;
Niebler, Gabriel ;
Triozon, Francois ;
Cuniberti, Gianaurelio ;
Roche, Stephan .
NANO RESEARCH, 2008, 1 (05) :361-394
[6]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[7]   Atomistic non-equilibrium Green's function simulations of Graphene nano-ribbons in the quantum hall regime [J].
Golizadeh-Mojarad, Roksana ;
Zainuddin, Abu Naser M. ;
Klimeck, Gerhard ;
Datta, Supriyo .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) :407-410
[8]   Midgap states and charge inhomogeneities in corrugated graphene [J].
Guinea, F. ;
Katsnelson, M. I. ;
Vozmediano, M. A. H. .
PHYSICAL REVIEW B, 2008, 77 (07)
[9]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   Electron scattering on microscopic corrugations in graphene [J].
Katsnelson, M. I. ;
Geim, A. K. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1863) :195-204