MCMC estimation and some model-fit analysis of multidimensional IRT models

被引:228
作者
Béguin, AA [1 ]
Glas, CAW [1 ]
机构
[1] Univ Twente, Enschede, Netherlands
关键词
Bayes estimates; full-information factor analysis; Gibbs sampler; item response theory; Markov chain Monte Carlo; multidimensional item response theory; normal ogive model;
D O I
10.1007/BF02296195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bayesian procedure to estimate the three-parameter normal ogive model and a generalization of the procedure to a model with multidimensional ability parameters are presented. The procedure is a generalization of a procedure by Albert (1992) for estimating the two-parameter normal ogive model. The procedure supports analyzing data from multiple populations and incomplete designs. It is shown that restrictions can be imposed on the factor matrix for testing specific hypotheses about the ability structure. The technique is illustrated using simulated and real data.
引用
收藏
页码:541 / 561
页数:21
相关论文
共 66 条
[11]  
BOCK RD, 1997, LATENT VARIABLE MODE, P163, DOI DOI 10.1007/978-1-4612-1842-5_8
[12]  
Box GE., 2011, BAYESIAN INFERENCE S
[13]   A Bayesian random effects model for testlets [J].
Bradlow, ET ;
Wainer, H ;
Wang, XH .
PSYCHOMETRIKA, 1999, 64 (02) :153-168
[14]   CHARACTERIZING THE MANIFEST PROBABILITIES OF LATENT TRAIT MODELS [J].
CRESSIE, N ;
HOLLAND, PW .
PSYCHOMETRIKA, 1983, 48 (01) :129-141
[15]  
FISCHER GH, 1995, RASCH MODELS, P15
[16]   Bayesian estimation of a multilevel IRT model using Gibbs sampling [J].
Fox, JP ;
Glas, CAW .
PSYCHOMETRIKA, 2001, 66 (02) :271-288
[17]  
FRASER C, 1988, NOHARM COMPUTER FITT
[18]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[19]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[20]  
Glas C. A., 2000, COMPUTERIZED ADAPTIV, P271, DOI DOI 10.1007/0-306-47531-6_14