Computing small-signal stability boundaries for large-scale power systems

被引:71
作者
Gomes, S [1 ]
Martins, N
Portela, C
机构
[1] Ctr Pesquisas Energia Elect, BR-21944970 Rio De Janeiro, Brazil
[2] UFRJ, COPPE, BR-21945970 Rio De Janeiro, Brazil
关键词
small-signal stability; eigenvalue; Hopf bifurcations; large-scale systems; Newton-Raphson method;
D O I
10.1109/TPWRS.2003.811205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes two algorithms for determining the value of a given system parameter that causes the crossing of a complex-conjugate eigenvalue pair through the small-signal stability boundary (Hopf bifurcation). A large-scale test system was utilized to validate the two proposed Hopf bifurcation algorithms. The results presented demonstrate the computational efficiency and numerical robustness of the algorithms.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 12 条
[1]   COMPUTATION OF CLOSEST BIFURCATIONS IN POWER-SYSTEMS [J].
ALVARADO, F ;
DOBSON, I ;
HU, Y ;
PAI, MA ;
PAL, NK .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (02) :918-928
[2]  
Alvarado F. L., 1990, P ISCAS C NEW ORL
[3]  
[Anonymous], 1988, EQUILIBRIUM CHAOS PR
[4]  
BEZERRA LH, 1996, IEEE T POWER SYST, V11, P162
[5]   COMPUTING AN OPTIMUM DIRECTION IN CONTROL SPACE TO AVOID SADDLE NODE BIFURCATION AND VOLTAGE COLLAPSE IN ELECTRIC-POWER SYSTEMS [J].
DOBSON, I ;
LU, LM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (10) :1616-1620
[6]  
HILL D, 2000, P IEEE SUMM M JUL
[7]  
Kundur P., 1994, POWER SYSTEM STABILI
[8]   Computing dominant poles of power system transfer functions [J].
Martins, N ;
Lima, LTG ;
Pinto, HJCP .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (01) :162-167
[9]   The Dominant Pole Spectrum Eigensolver [J].
Martins, N .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (01) :245-252