Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal

被引:111
作者
Watanabe, M
Masuyama, N
Fukuda, M
Nishida, E [1 ]
机构
[1] Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Biophys, Sakyo Ku, Kyoto 6068502, Japan
关键词
D O I
10.1093/embo-reports/kvd029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Smad family proteins play a pivotal role in transmitting the transforming growth factor-beta (TGF-beta) superfamily signals from the cell surface to the nucleus. In response to ligand stimulation, Smad4 forms a complex with respective receptor-specific Smads, and the complex translocates into the nucleus and regulates gene expression. Thus, the nuclear entry of the Smad complex is one of the key steps in signal transduction. However, little is known about regulatory mechanisms for nucleocytoplasmic transport of Smads. Here we report identification of a functional, leucine-rich nuclear export signal (NES) in Smad4, which regulates subcellular distribution of Smad4. We then show evidence suggesting that the NES-dependent cytoplasmic localization of Smad4 is important for ensuring optimal TGF-beta responsivenesses in transcriptional activation. Moreover, we show that the NES of Smad4 is specifically inactivated by the stimulus-dependent hetero-oligomerization with receptor-specific Smads during the TGF-beta -induced nuclear translocation of Smad4. Taken together, these results suggest an important regulatory role of the NES of Smad4 in TGF-beta signaling.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 33 条
[1]   Smads as transcriptional co-modulators [J].
Attisano, L ;
Wrana, JL .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :235-243
[2]   The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain [J].
de Caestecker, MP ;
Yahata, T ;
Wang, D ;
Parks, WT ;
Huang, SX ;
Hill, CS ;
Shioda, T ;
Roberts, AB ;
Lechleider, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :2115-2122
[3]   Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene [J].
Dennler, S ;
Itoh, S ;
Vivien, D ;
ten Dijke, P ;
Huet, S ;
Gauthier, JM .
EMBO JOURNAL, 1998, 17 (11) :3091-3100
[4]  
DERYNCK R, 1997, BIOCHIM BIOPHYS ACTA, V1333, P105
[5]   Microtubule binding to Smads may regulate TGFβ activity [J].
Dong, CM ;
Li, ZR ;
Alvarez, R ;
Feng, XH ;
Goldschmidt-Clermont, PJ .
MOLECULAR CELL, 2000, 5 (01) :27-34
[6]   MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma [J].
Eppert, K ;
Scherer, SW ;
Ozcelik, H ;
Pirone, R ;
Hoodless, P ;
Kim, H ;
Tsui, LC ;
Bapat, B ;
Gallinger, S ;
Andrulis, IL ;
Thomsen, GH ;
Wrana, JL ;
Attisano, L .
CELL, 1996, 86 (04) :543-552
[7]  
Fornerod M, 1997, CELL, V90, P1051
[8]   Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal [J].
Fukuda, M ;
Gotoh, I ;
Gotoh, Y ;
Nishida, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :20024-20028
[9]   CRM1 is responsible for intracellular transport mediated by the nuclear export signal [J].
Fukuda, M ;
Asano, S ;
Nakamura, T ;
Adachi, M ;
Yoshida, M ;
Yanagida, M ;
Nishida, E .
NATURE, 1997, 390 (6657) :308-311
[10]   NUCLEAR EXPORT SIGNALS AND THE FAST-TRACK TO THE CYTOPLASM [J].
GERACE, L .
CELL, 1995, 82 (03) :341-344