Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM)

被引:55
作者
Muzumdar, Mandar Deepak
Luo, Liqun [1 ]
Zong, Hui
机构
[1] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Stanford, CA 94305 USA
关键词
cell proliferation; development; knockout; tumor suppressor genes;
D O I
10.1073/pnas.0606491104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The initiation and progression of many human cancers involve either somatic activation of protooncogenes or inactivation of tumor-suppressor genes (TSGs) in sporadic cells. Although sporadic gain-of-function of protooncogenes has been successfully modeled in mice [e.g., Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Nature 410:1111-1116], generating a similar degree of sparseness of TSG loss-of-function remains a challenge. Here, we use mosaic analysis with double markers (MADM) to achieve TSG inactivation and concurrent labeling in sporadic somatic cells of mice, closely mimicking loss of heterozygosity as occurs in human cancers. As proof of principle, we studied the consequence of sporadic loss of p27kip1, a cyclin-dependent kinase inhibitor. MADM-mediated loss of p27kip1 results in mutant cell expansion markedly greater than that observed in conventional p27kip1 knockouts. Moreover, the direct comparison of WT and mutant cells at single-cell resolution afforded by MADM reveals that p27kip1 regulates organ size in vivo by cell-autonomous control of cell cycle exit timing. These studies establish MADM as a high-resolution method for modeling sporadic loss of heterozygosity in mice, providing insights into TSG function.
引用
收藏
页码:4495 / 4500
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2005, IMAGING NEUROSCIENCE
[2]   The knockout mouse project [J].
Austin, CP ;
Battey, JF ;
Bradley, A ;
Bucan, M ;
Capecchi, M ;
Collins, FS ;
Dove, WF ;
Duyk, G ;
Dymecki, S ;
Eppig, JT ;
Grieder, FB ;
Heintz, N ;
Hicks, G ;
Insel, TR ;
Joyner, A ;
Koller, BH ;
Lloyd, KCK ;
Magnuson, T ;
Moore, MW ;
Nagy, A ;
Pollock, JD ;
Roses, AD ;
Sands, AT ;
Seed, B ;
Skarnes, WC ;
Snoddy, J ;
Soriano, P ;
Stewart, DJ ;
Stewart, F ;
Stillman, B ;
Varmus, H ;
Varticovski, L ;
Verma, IM ;
Vogt, TF ;
von Melchner, H ;
Witkowski, J ;
Woychik, RP ;
Wurst, W ;
Yancopoulos, GD ;
Young, SG ;
Zambrowicz, B .
NATURE GENETICS, 2004, 36 (09) :921-924
[3]  
Chen P, 1999, DEVELOPMENT, V126, P1581
[4]   Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase [J].
Danielian, PS ;
Muccino, D ;
Rowitch, DH ;
Michael, SK ;
McMahon, AP .
CURRENT BIOLOGY, 1998, 8 (24) :1323-1326
[5]   A cyclin-dependent kinase inhibitor, dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis [J].
deNooij, JC ;
Letendre, MA ;
Hariharan, IK .
CELL, 1996, 87 (07) :1237-1247
[6]   p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation [J].
Durand, B ;
Fero, ML ;
Roberts, JM ;
Raff, MC .
CURRENT BIOLOGY, 1998, 8 (08) :431-440
[7]   p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations [J].
Dyer, MA ;
Cepko, CL .
JOURNAL OF NEUROSCIENCE, 2001, 21 (12) :4259-4271
[8]   A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice [J].
Fero, ML ;
Rivkin, M ;
Tasch, M ;
Porter, P ;
Carow, CE ;
Firpo, E ;
Polyak, K ;
Tsai, LH ;
Broudy, V ;
Perlmutter, RM ;
Kaushansky, K ;
Roberts, JM .
CELL, 1996, 85 (05) :733-744
[9]   The hallmarks of cancer [J].
Hanahan, D ;
Weinberg, RA .
CELL, 2000, 100 (01) :57-70
[10]   Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene [J].
Holzenberger, Martin ;
Lenzner, Claudia ;
Leneuve, Patricia ;
Zaoui, Randa ;
Hamard, Ghislaine ;
Vaulont, Sophie ;
Le Bouc, Yves .
NUCLEIC ACIDS RESEARCH, 2000, 28 (21) :92