On the convergence of fitting algorithms in computer vision

被引:19
作者
Chernov, N. [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
基金
美国国家科学基金会;
关键词
statistical methods; maximum likelihood; convergence rates; conic fitting;
D O I
10.1007/s10851-006-0646-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate several numerical schemes for estimating parameters in computer vision problems: HEIV, FNS, renormalization method, and others. We prove mathematically that these algorithms converge rapidly, provided the noise is small. In fact, in just 1-2 iterations they achieve maximum possible statistical accuracy. Our results are supported by a numerical experiment. We also discuss the performance of these algorithms when the noise increases and/or outliers are present.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 16 条