Biodiesel from sunflower oil by using activated calcium oxide

被引:644
作者
Lopez Granados, M.
Zafra Poves, M. D.
Martin Alonso, D.
Mariscal, R.
Cabello Galisteo, F.
Moreno-Tost, R.
Santamaria, J.
Fierro, J. L. G.
机构
[1] CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain
[2] Univ Malaga, Fac Ciencias, Dept Quim Inorgan Cristalog & Mineral, E-29071 Malaga, Spain
关键词
lime; CaO; Ca(OH)(2); CaCO3; transesterification; fatty acid methyl esters (FAME); heterogeneous basic catalyst;
D O I
10.1016/j.apcatb.2006.12.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work studies the activity of activated CaO as a catalyst in the production of biodiesel by transesterification of triglycerides with methanol. Three basic aspects were investigated: the role of H2O and CO2 in the deterioration of the catalytic performance by contact with room air, the stability of the catalyst by reutilization in successive runs and the heterogeneous character of the catalytic reaction. The characterization by X-ray diffraction (XRD), evolved gas analysis by mass spectrometry (EGA-MS) during heating the sample under programmed temperature, X-ray photoelectron (XPS) and Fourier transform-infrared (FT-IR) spectroscopies allowed to concluding that CaO is rapidly hydrated and carbonated by contact with room air. Few minutes are enough to chemisorb significant amount of H2O and CO2. It is demonstrated that the CO2 is the main deactivating agent whereas the negative effect water is less important. As a matter of fact the surface of the activated catalyst is better described as an inner core of CaO particles covered by very few layers of Ca(OH)(2). The activation by outgassing at temperatures >= 973 K are required to revert the CO2 Poisoning. The catalyst can be reused for several runs without significant deactivation. The catalytic reaction is the result of the heterogeneous and homogeneous contributions. Part of the reaction takes place on basic sites at the surface of the catalyst, the rest is due to the dissolution of the activated CaO in methanol that creates homogeneous leached active species. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 33 条
[1]   Oxide and carbonate surfaces as environmental interfaces: the importance of water in surface composition and surface reactivity [J].
Al-Abadleh, HA ;
Al-Hosney, HA ;
Grassian, VH .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 228 (1-2) :47-54
[2]   Liquid-like H2O adsorption layers to catalyze the Ca(OH)2iCO2 solid-gas reaction and to form a non-protective solid product layer at 20°C [J].
Beruto, DT ;
Botter, R .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (04) :497-503
[3]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[4]   Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis [J].
Cantrell, DG ;
Gillie, LJ ;
Lee, AF ;
Wilson, K .
APPLIED CATALYSIS A-GENERAL, 2005, 287 (02) :183-190
[5]   Biodiesel as alternative fuel: Experimental analysis and energetic evaluations [J].
Carraretto, C ;
Macor, A ;
Mirandola, A ;
Stoppato, A ;
Tonon, S .
ENERGY, 2004, 29 (12-15) :2195-2211
[6]   Optimization of alkaline earth metal oxide and hydroxide catalysts for base-catalyzed reactions [J].
Corma, A ;
Iborra, S .
ADVANCES IN CATALYSIS, VOL 49, 2006, 49 :239-302
[7]   Classification of simple oxides: A polarizability approach [J].
Dimitrov, V ;
Komatsu, T .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :100-112
[8]  
Doyle CS, 1999, SURF REV LETT, V6, P1247, DOI 10.1142/S0218625X99001402
[9]   Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst [J].
Ebiura, T ;
Echizen, T ;
Ishikawa, A ;
Murai, K ;
Baba, T .
APPLIED CATALYSIS A-GENERAL, 2005, 283 (1-2) :111-116
[10]   Combustion of fat and vegetable oil derived fuels in diesel engines [J].
Graboski, MS ;
McCormick, RL .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1998, 24 (02) :125-164