An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

被引:177
作者
Cha, Hyojung [1 ,2 ]
Wu, Jiaying [1 ,2 ]
Wadsworth, Andrew [1 ,2 ]
Nagitta, Jade [1 ,2 ]
Limbu, Saurav [2 ,3 ]
Pont, Sebastian [1 ,2 ]
Li, Zhe [4 ]
Searle, Justin [4 ]
Wyatt, Mark F. [5 ]
Baran, Derya [6 ]
Kim, Ji-Seon [2 ,3 ]
McCulloch, Iain [1 ,2 ,6 ]
Durrant, James R. [1 ,2 ,4 ]
机构
[1] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[2] Imperial Coll London, Ctr Plast Elect, London SW7 2AZ, England
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Swansea Univ, Baglan Bay Innovat Ctr, Coll Engn, SPECIF IKC, Swansea SA12 7AX, W Glam, Wales
[5] Swansea Univ, Sch Med, EPSRC UK Natl Mass Spectrometry Facil NMSF, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[6] KAUST, KAUST Solar Ctr KSC, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
charge separation; nonfullerene acceptors; organic solar cells; trap assisted recombination; CHARGE SEPARATION; FULLERENE; DEGRADATION; STABILITY;
D O I
10.1002/adma.201701156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)- 2,2'; 5', 2.; 5 '', 2'''-quaterthiophen-5,5'''-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C-71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T-2OD: EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 +/- 0.2%. The devices exhibit a high open circuit voltage of 1.08 +/- 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD: PC71BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD: EHIDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD: EH-IDTBR solar cells are found to be substantially more stable under 85 degrees C thermal stress than PffBT4T-2OD: PC71BM devices.
引用
收藏
页数:8
相关论文
共 41 条
[31]   The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell [J].
Peters, Craig H. ;
Sachs-Quintana, I. T. ;
Mateker, William R. ;
Heumueller, Thomas ;
Rivnay, Jonathan ;
Noriega, Rodigo ;
Beiley, Zach M. ;
Hoke, Eric T. ;
Salleo, Alberto ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2012, 24 (05) :663-+
[32]   Polymer solar cells with enhanced lifetime by improved electrode stability and sealing [J].
Roesch, Roland ;
Eberhardt, Kai-Rudi ;
Engmann, Sebastian ;
Gobsch, Gerhard ;
Hoppe, Harald .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 :59-66
[33]   Exploring the photoinduced electron transfer reactivity of aza[60]fullerene iminium cation [J].
Roubelakis, Manolis M. ;
Vougioukalakis, Georgios C. ;
Nye, Leanne C. ;
Drewello, Thomas ;
Orfanopoulos, Michael .
TETRAHEDRON, 2010, 66 (48) :9363-9369
[34]   Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants [J].
Savagatrup, Suchol ;
Printz, Adam D. ;
O'Connor, Timothy F. ;
Zaretski, Aliaksandr V. ;
Rodriquez, Daniel ;
Sawyer, Eric J. ;
Rajan, Kirtana M. ;
Acosta, Raziel I. ;
Root, Samuel E. ;
Lipomi, Darren J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :55-80
[35]   The infrared and Raman spectra of fullerene C70.: DFT calculations and correlation with C60 [J].
Schettino, V ;
Pagliai, M ;
Cardini, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (09) :1815-1823
[36]   Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell [J].
Schroeder, Bob C. ;
Li, Zhe ;
Brady, Michael A. ;
Faria, Gregorio Couto ;
Ashraf, Raja Shahid ;
Takacs, Christopher J. ;
Cowart, John S. ;
Duong, Duc T. ;
Chiu, Kar Ho ;
Tan, Ching-Hong ;
Cabral, Joao T. ;
Salleo, Alberto ;
Chabinyc, Michael L. ;
Durrant, James R. ;
McCulloch, Iain .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) :12870-12875
[37]   A Comparison of Charge Separation Dynamics in Organic Blend Films Employing Fullerene and Perylene Diimide Electron Acceptors [J].
Shoaee, Safa ;
Deledalle, Florent ;
Tuladhar, Pabitra Shakya ;
Shivanna, Ravichandran ;
Rajaram, Sridhar ;
Narayan, K. S. ;
Durrant, James R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (01) :201-205
[38]   PHOTO-DIMERIZATION KINETICS IN SOLID C-60 FILMS [J].
WANG, Y ;
HOLDEN, JM ;
DONG, ZH ;
BI, XX ;
EKLUND, PC .
CHEMICAL PHYSICS LETTERS, 1993, 211 (4-5) :341-345
[39]   Defect trapping states and charge carrier recombination in organic-inorganic halide perovskites [J].
Wen, Xiaoming ;
Feng, Yu ;
Huang, Shujuan ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Green, Martin ;
Ho-Baillie, Anita .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (04) :793-800
[40]   Morphological Stability and Performance of Polymer-Fullerene Solar Cells under Thermal Stress: The Impact of Photoinduced PC60BM Oligomerization [J].
Wong, Him Cheng ;
Li, Zhe ;
Tan, Ching Hong ;
Zhong, Hongliang ;
Huang, Zhenggang ;
Bronstein, Hugo ;
McCulloch, Iain ;
Cabral, Joao T. ;
Durrant, James R. .
ACS NANO, 2014, 8 (02) :1297-1308