Inimer graft-copolymerized poly(vinylidene fluoride) for the preparation of arborescent copolymers and "surface-active" copolymer membranes

被引:68
作者
Zhai, GQ [1 ]
Kang, ET [1 ]
Neoh, KG [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
D O I
10.1021/ma048894l
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A novel graft copolymer was synthesized via graft copolymerization of an inimer, 2-(2-bromoisobutyryloxy)ethyl acrylate (BIEA), with ozone-pretreated poly(vinylidene fluoride) (PVDF) (the PVDF-g-PBIEA copolymer). Porous membranes could be fabricated from the copolymer solution by phase inversion. The BIEA polymer (PBIEA) side chains allowed the initiation of atom transfer radical polymerization (ATRP) of functional monomers on the copolymer and the membrane surface. An arborescent copolymer was prepared via ATRP of sodium 4-styrenesulfonate (NaSS) initiated from the PVDF-g-PBIEA copolymer side chains (PVDF-g-PBIEA-ar-NaPSS copolymer). In comparison with the PVDF-g-PBIEA-ar-NaPSS copolymer membrane cast in water by phase inversion, the copolymer membrane cast in 1 M aqueous NaCl solution had enriched NaPSS side chains on the surface and larger pore size. The PVDF-g-PBIEA-ar-PPEGMA membrane was prepared via the surface-initiated ATRP of poly(ethylene glycol) methacrylate (PEGMA) on the porous PVDF-g-PBIEA membrane. Protein adsorption studies indicated that the PVDF-g-PBIEA-ar-PPEGMA membrane exhibited substantially improved antifouling properties. Thus, the PVDF-g-PBIEA membranes with the active ATRP inimer repeat units on the surface offers opportunities for the functionalization of membranes via surface molecular design.
引用
收藏
页码:7240 / 7249
页数:10
相关论文
共 75 条
[21]   PREPARATION OF HYPERBRANCHED AND STAR POLYMERS BY A LIVING, SELF-CONDENSING FREE-RADICAL POLYMERIZATION [J].
HAWKER, CJ ;
FRECHET, JMJ ;
GRUBBS, RB ;
DAO, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (43) :10763-10764
[22]   ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives [J].
Hester, JF ;
Banerjee, P ;
Won, YY ;
Akthakul, A ;
Acar, MH ;
Mayes, AM .
MACROMOLECULES, 2002, 35 (20) :7652-7661
[23]  
Hietala S, 1999, J POLYM SCI POL PHYS, V37, P2893, DOI 10.1002/(SICI)1099-0488(19991015)37:20<2893::AID-POLB9>3.0.CO
[24]  
2-4
[25]   Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes [J].
Hietala, S ;
Holmberg, S ;
Karjalainen, M ;
Nasman, J ;
Paronen, M ;
Serimaa, R ;
Sundholm, F ;
Vahvaselka, S .
JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (05) :721-726
[26]   Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques [J].
Holmberg, S ;
Holmlund, P ;
Wilén, CE ;
Kallio, T ;
Sundholm, G ;
Sundholm, F .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (04) :591-600
[27]   Bipolar membrane prepared by grafting and plasma polymerization [J].
Hsueh, CL ;
Peng, YJ ;
Wang, CC ;
Chen, CY .
JOURNAL OF MEMBRANE SCIENCE, 2003, 219 (1-2) :1-13
[28]   Polymerization of sodium 4-styrenesulfonate via atom transfer radical polymerization in protic media [J].
Iddon, PD ;
Robinson, KL ;
Armes, SP .
POLYMER, 2004, 45 (03) :759-768
[29]   Kinetics of hyperbranched polystyrenes by free radical polymerization of photofunctional inimer [J].
Ishizu, K ;
Ohta, Y ;
Kawauchi, S .
MACROMOLECULES, 2002, 35 (09) :3781-3784
[30]   Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) membranes [J].
Jian, K ;
Pintauro, PN ;
Ponangi, R .
JOURNAL OF MEMBRANE SCIENCE, 1996, 117 (1-2) :117-133