Nonlinear finite-time Lyapunov exponent and predictability

被引:141
作者
Ding, Ruiqiang [1 ]
Li, Jianping [1 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Lyapunov exponent; nonlinear; chaos; logistic map; predictability;
D O I
10.1016/j.physleta.2006.11.094
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we introduce a definition of the nonlinear finite-time Lyapunov exponent (FTLE), which is a nonlinear generalization to the existing local or finite-time Lyapunov exponents. With the nonlinear FTLE and its derivatives, the limit of dynamic predictability in large classes of chaotic systems can be efficiently and quantitatively determined. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 31 条
[1]  
[Anonymous], 1996, Proc. seminar on predictability, DOI DOI 10.1017/CBO9780511617652.004
[2]  
[Anonymous], J EC SURVEYS
[3]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[4]  
Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO
[5]  
2
[6]  
Dalcher A., 1987, Tellus, Series A (Dynamic Meteorology and Oceanography), V39A, P474, DOI 10.1111/j.1600-0870.1987.tb00322.x
[7]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[10]   Distinguished material surfaces and coherent structures in three-dimensional fluid flows [J].
Haller, G .
PHYSICA D, 2001, 149 (04) :248-277