Comparing ligand interactions with multiple receptors via serial docking

被引:22
作者
Fernandes, MX [1 ]
Kairys, V [1 ]
Gilson, MK [1 ]
机构
[1] Univ Maryland, Maryland Biotechnol Inst, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 2004年 / 44卷 / 06期
关键词
D O I
10.1021/ci049803m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Standard uses of ligand-receptor docking typically focus on the association of candidate ligands with a Single targeted receptor, but actual applications increasingly require comparisons across multiple receptors. This study demonstrates that comparative docking to multiple receptors can help to select homology models for virtual compound screening and to discover ligands that bind to one set of receptors but not to another, potentially similar, set. A serial docking algorithm is furthermore described that reduces the computational Costs Of Such calculations by testing compounds against a series of receptor structures and discarding a compound as soon as it fails to satisfy specified bind/no bind criteria for each receptor. The algorithm also realizes Substantial efficiencies by taking advantage of the fact that a ligand typically binds in similar conformations to similar receptors. Thus, once detailed docking has been used to fit a ligand into the first of a series of similar receptors, much less extensive calculations can be used for the remaining structures.
引用
收藏
页码:1961 / 1970
页数:10
相关论文
共 60 条
[1]   Molecular basis of HIV-1 protease drug resistance: Structural analysis of mutant proteases complexed with cyclic urea inhibitors [J].
Ala, PJ ;
Huston, EE ;
Klabe, RM ;
McCabe, DD ;
Duke, JL ;
Rizzo, CJ ;
Korant, BD ;
DeLoskey, RJ ;
Lam, PYS ;
Hodge, CN ;
Chang, CH .
BIOCHEMISTRY, 1997, 36 (07) :1573-1580
[2]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]   Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? [J].
Bissantz, C ;
Bernard, P ;
Hibert, M ;
Rognan, D .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 50 (01) :5-25
[5]   Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool [J].
Bower, MJ ;
Cohen, FE ;
Dunbrack, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (05) :1268-1282
[6]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[7]   A method for including protein flexibility in protein-ligand docking: Improving tools for database mining and virtual screening [J].
Broughton, HB .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2000, 18 (03) :247-+
[8]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[9]  
Chan CC, 1999, J PHARMACOL EXP THER, V290, P551
[10]   FlexE: Efficient molecular docking considering protein structure variations [J].
Claussen, H ;
Buning, C ;
Rarey, M ;
Lengauer, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :377-395