Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path

被引:203
作者
Lee, CJ
Lee, SM
Mukhopadhyay, P
Kim, SJ
Lee, SC
Ahn, WS
Yu, MH
Storz, G
Ryu, SE
机构
[1] Korea Res Inst Biosci & Biotechnol, Ctr Cellular Switch Prot Struct, Taejon 305806, South Korea
[2] Korea Res Inst Biosci & Biotechnol, System Proteom Res Ctr, Taejon 305806, South Korea
[3] Korea Inst Sci & Technol, Div Life Sci, Seoul 130650, South Korea
[4] Korea Inst Sci & Technol, Functional Proteom Ctr, Seoul 130650, South Korea
[5] NICHHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1038/nsmb856
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Escherichia coli OxyR transcription factor is activated by cellular hydrogen peroxide through the oxidation of reactive cysteines. Although there is substantial evidence for specific disulfide bond formation in the oxidative activation of OxyR, the presence of the disulfide bond has remained controversial. By mass spectrometry analyses and in vivo labeling assays we found that oxidation of OxyR results in the formation of a specific disulfide bond between Cys199 and Cys208 in the wild-type protein. In addition, using time-resolved kinetic analyses, we determined that OxyR activation occurs at a rate of 9.7 s(-1). The disulfide bond-mediated conformation switch results in a metastable form that is locally strained by 3 kcal mol(-1). On the basis of these observations we conclude that OxyR activation requires specific disulfide bond formation and that the rapid kinetic reaction path and conformation strain, respectively, drive the oxidation and reduction of OxyR.
引用
收藏
页码:1179 / 1185
页数:7
相关论文
共 25 条
[1]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[2]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[3]   Toward understanding tryptophan fluorescence in proteins [J].
Chen, Y ;
Barkley, MD .
BIOCHEMISTRY, 1998, 37 (28) :9976-9982
[4]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113
[5]   Protein-sulfenic acids: Diverse roles for an unlikely player in enzyme catalysis and redox regulation [J].
Claiborne, A ;
Yeh, JI ;
Mallett, TC ;
Luba, J ;
Crane, EJ ;
Charrier, V ;
Parsonage, D .
BIOCHEMISTRY, 1999, 38 (47) :15407-15416
[6]   Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase [J].
Ellis, HR ;
Poole, LB .
BIOCHEMISTRY, 1997, 36 (48) :15013-15018
[7]  
Fersht A., 1998, STRUCTURE MECH PROTE
[8]   How to flip the (redox) switch [J].
Georgiou, G .
CELL, 2002, 111 (05) :607-610
[9]   Mechanisms of protein folding [J].
Grantcharova, V ;
Alm, EJ ;
Baker, D ;
Horwich, AL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (01) :70-82
[10]  
Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341