Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway

被引:123
作者
Dong, H [1 ]
Beer, SV [1 ]
机构
[1] Cornell Univ, Dept Plant Pathol, Ithaca, NY 14853 USA
关键词
protein kinase cascade; systemic acquired resistance;
D O I
10.1094/PHYTO.2000.90.8.801
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The role of riboflavin as an elicitor of systemic resistance and an activator of a novel signaling process in plants was demonstrated. Following treatment with riboflavin, Arabidopsis thaliana developed systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. Tomato, and tobacco developed systemic resistance to Tobacco mosaic virus (TMV) and Alternaria alternata. Riboflavin, at concentrations necessary for resistance induction, did not cause cell death in plants or directly affect growth of the culturable pathogens. Riboflavin induced expression of pathogenesis-related (PR) genes in the plants, suggesting its ability to trigger a signal transduction pathway that leads to systemic resistance. Both the protein kinase inhibitor K252a and mutation in the NIM1/NPR1 gene which controls transcription of defense genes, impaired responsiveness to riboflavin. In contrast, riboflavin induced resistance and PR gene expression in NahG plants, which fail to accumulate salicylic acid (SA). Thus, riboflavin-induced resistance requires protein kinase signaling mechanisms and a functional NIM1/NPR1 gene, but not accumulation of SA. Riboflavin is an elicitor of systemic resistance, and it triggers resistance signal transduction in a distinct manner.
引用
收藏
页码:801 / 811
页数:11
相关论文
共 94 条
[91]   Salicylic acid activates a 48-kD MAP kinase in tobacco [J].
Zhang, SQ ;
Klessig, DF .
PLANT CELL, 1997, 9 (05) :809-824
[92]   Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene [J].
Zhang, YL ;
Fan, WH ;
Kinkema, M ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6523-6528
[93]   THE TOMATO GENE PTI1 ENCODES A SERINE/THREONINE KINASE THAT IS PHOSPHORYLATED BY PTO AND IS INVOLVED IN THE HYPERSENSITIVE RESPONSE [J].
ZHOU, JM ;
LOH, YT ;
BRESSAN, RA ;
MARTIN, GB .
CELL, 1995, 83 (06) :925-935
[94]  
Zubay Geoffrey L., 1998, Biochemistry, VFourth