Predictive Model Assessment for Count Data

被引:307
作者
Czado, Claudia [1 ]
Gneiting, Tilmann [2 ]
Held, Leonhard [3 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[3] Univ Zurich, Biostat Abt, Inst Sozial & Praventivmed, CH-8001 Zurich, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
Calibration; Forecast verification; Model diagnostics; Predictive deviance; Probability integral transform; Proper scoring rule; TIME-SERIES; PROBABILISTIC FORECASTS; DISPERSION; RESIDUALS; CHOICE;
D O I
10.1111/j.1541-0420.2009.01191.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
P>We discuss tools for the evaluation of probabilistic forecasts and the critique of statistical models for count data. Our proposals include a nonrandomized version of the probability integral transform, marginal calibration diagrams, and proper scoring rules, such as the predictive deviance. In case studies, we critique count regression models for patent data, and assess the predictive performance of Bayesian age-period-cohort models for larynx cancer counts in Germany. The toolbox applies in Bayesian or classical and parametric or nonparametric settings and to any type of ordered discrete outcomes.
引用
收藏
页码:1254 / 1261
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 1999, Relative Distribution Methods in the Social Sciences
[2]  
[Anonymous], 2008, Econometric analysis of count data, DOI DOI 10.1007/978-3-540-24728-9_5
[3]  
[Anonymous], 2018, Generalized linear models
[4]   Bayesian projections: What are the effects of excluding data from younger age groups? [J].
Baker, A ;
Bray, I .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2005, 162 (08) :798-805
[5]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[6]   Scoring probabilistic forecasts:: The importance of being proper [J].
Brocker, Jochen ;
Smith, Leonard A. .
WEATHER AND FORECASTING, 2007, 22 (02) :382-388
[7]   Universal residuals: A multivariate transformation [J].
Brockwell, A. E. .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (14) :1473-1478
[8]   Evaluation of probabilistic prediction systems for a scalar variable [J].
Candille, G ;
Talagrand, O .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (609) :2131-2150
[9]   Spatial modeling of snow water equivalent using covariances estimated from spatial and geomorphic attributes [J].
Carroll, SS ;
Cressie, N .
JOURNAL OF HYDROLOGY, 1997, 190 (1-2) :42-59
[10]   Bayesian prediction of spatial count data using generalized linear mixed models [J].
Christensen, OF ;
Waagepetersen, R .
BIOMETRICS, 2002, 58 (02) :280-286