Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation

被引:101
作者
Chang, S [1 ]
Pikaard, CS [1 ]
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
关键词
D O I
10.1074/jbc.M409053200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Blocking histone deacetylation with trichostatin A (TSA) or blocking cytosine methylation using 5-aza-2'-deoxycytosine (aza-dC) can derepress silenced genes in multicellular eukaryotes, including animals and plants. We questioned whether DNA methylation and histone deacetylation overlap in the regulation of endogenous plant genes by monitoring changes in expression of similar to7800 Arabidopsis thaliana genes following treatment with aza-dC, TSA, or both chemicals together. RNA levels for similar to4% of the genes were reproducibly changed 3-fold or more by at least one treatment. Distinct subsets of genes are up-regulated or down-regulated in response to aza-dC, TSA, or simultaneous treatment with both chemicals, with little overlap among subsets. Surprisingly, the microarray data indicate that TSA and aza-dC are often antagonistic rather than synergistic in their effects. Analysis of green fluorescent protein transgenic plants confirmed this finding, showing that TSA can block the up-regulation of silenced green fluorescent protein transgenes in response to aza-dC or a ddm1 ( decrease in DNA methylation 1) mutation. Our results indicate that global inhibition of DNA methylation or histone deacetylation has complex, nonredundant effects for the majority of responsive genes and suggest that activation of some genes requires one or more TSA-sensitive deacetylation events in addition to cytosine demethylation.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 67 条
[1]   Disruption of the plant gene MOM releases transcriptional silencing of methylated genes [J].
Amedeo, P ;
Habu, Y ;
Afsar, K ;
Scheid, OM ;
Paszkowski, J .
NATURE, 2000, 405 (6783) :203-206
[2]   Trichostatin A reduces hormone-induced transcription of the MMTV promoter and has pleiotropic effects on its chromatin structure [J].
Åstrand, C ;
Klenka, T ;
Wrange, Ö ;
Belikov, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (06) :1153-1162
[3]   Heterochromatin in animals and plants. Similarities and differences [J].
Avramova, ZV .
PLANT PHYSIOLOGY, 2002, 129 (01) :40-49
[4]   Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene [J].
Bartee, L ;
Malagnac, F ;
Bender, J .
GENES & DEVELOPMENT, 2001, 15 (14) :1753-1758
[5]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[6]   Genomewide studies of histone deacetylase function in yeast [J].
Bernstein, BE ;
Tong, JK ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13708-13713
[7]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[8]   Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer [J].
Cameron, EE ;
Bachman, KE ;
Myöhänen, S ;
Herman, JG ;
Baylin, SB .
NATURE GENETICS, 1999, 21 (01) :103-107
[9]   Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing [J].
Cao, XF ;
Jacobsen, SE .
CURRENT BIOLOGY, 2002, 12 (13) :1138-1144
[10]   Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X [J].
Chadwick, BP ;
Willard, HF .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2003, 14 (06) :359-367