Protein transport via the cpTat pathway displays cooperativity and is stimulated by transport-incompetent substrate

被引:17
作者
Alder, NN [1 ]
Theg, SM [1 ]
机构
[1] Univ Calif Davis, Div Biol Sci, Plant Biol Sect, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
cpTat pathway; thylakoid; kinetics; cooperativity;
D O I
10.1016/S0014-5793(03)00231-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kinetic analyses of cpTat-mediated protein transport across the thylakoid membrane were conducted, revealing three important characteristics of this translocation pathway. First, transport via the cpTAT system displays a non-Michaelis-Menten, sigmoidal rate-substrate relationship with an apparent Hill coefficient of 1.80, indicative of positive homotropic cooperativity. Second, the presence of transport-incompetent substrates was found not to competitively inhibit the translocation of transport-competent substrates. However, the presence of low concentrations of transport-incompetent protein enhances the transport of wild type substrate. Together, these findings suggest that interaction between Tat machinery components and both transport-competent and transport-incompetent protein may elicit a cooperative effect on the translocation rate. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 35 条
[1]   Energetics of protein transport across biological membranes:: A study of the thylakoid ΔpH-dependent/cpTat pathway [J].
Alder, NN ;
Theg, SM .
CELL, 2003, 112 (02) :231-242
[2]   Two distinct translocation intermediates can be distinguished during protein transport by the TAT (Δph) pathway across the thylakoid membrane [J].
Berghöfer, J ;
Klösgen, RB .
FEBS LETTERS, 1999, 460 (02) :328-332
[3]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[4]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[5]   Subunit interactions in the twin-arginine translocase complex of Escherichia coli [J].
Bolhuis, A ;
Bogsch, EG ;
Robinson, C .
FEBS LETTERS, 2000, 472 (01) :88-92
[6]   THE DELTA-PH-DRIVEN, ATP-INDEPENDENT PROTEIN TRANSLOCATION MECHANISM IN THE CHLOROPLAST THYLAKOID MEMBRANE - KINETICS AND ENERGETICS [J].
BROCK, IW ;
MILLS, JD ;
ROBINSON, D ;
ROBINSON, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1657-1662
[7]  
CAPELLOS C, 1980, KINETIC SYSTEMS
[8]   A NEW-TYPE OF SIGNAL PEPTIDE - CENTRAL ROLE OF A TWIN-ARGININE MOTIF IN TRANSFER SIGNALS FOR THE DELTA-PH-DEPENDENT THYLAKOIDAL PROTEIN TRANSLOCASE [J].
CHADDOCK, AM ;
MANT, A ;
KARNAUCHOV, I ;
BRINK, S ;
HERRMANN, RG ;
KLOSGEN, RB ;
ROBINSON, C .
EMBO JOURNAL, 1995, 14 (12) :2715-2722
[9]   A folded protein can be transported across the chloroplast envelope and thylakoid membranes [J].
Clark, SA ;
Theg, SM .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (05) :923-934
[10]  
CLINE K, 1985, J BIOL CHEM, V260, P3691