Domino plasmons for subwavelength terahertz circuitry

被引:242
作者
Martin-Cano, D. [1 ]
Nesterov, M. L. [1 ,2 ]
Fernandez-Dominguez, A. I. [1 ]
Garcia-Vidal, F. J. [1 ]
Martin-Moreno, L. [3 ,4 ]
Moreno, Esteban [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[2] NAS Ukraine, A Ya Usikov Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine
[3] Univ Zaragoza, CSIC, ICMA, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
来源
OPTICS EXPRESS | 2010年 / 18卷 / 02期
关键词
WAVE-GUIDES; METAL WIRES; TECHNOLOGY; PROPAGATION; DEVICES; SURFACES;
D O I
10.1364/OE.18.000754
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new approach for the spatial and temporal modulation of electromagnetic fields at terahertz frequencies is presented. The waveguiding elements are based on plasmonic and metamaterial notions and consist of an easy-to-manufacture periodic chain of metallic box-shaped elements protruding out of a metallic surface. It is shown that the dispersion relation of the corresponding electromagnetic modes is rather insensitive to the waveguide width, preserving tight confinement and reasonable absorption loss even when the waveguide transverse dimensions are well in the subwavelength regime. This property enables the simple implementation of key devices, such as tapers and power dividers. Additionally, directional couplers, waveguide bends, and ring resonators are characterized, demonstrating the flexibility of the proposed concept and the prospects for terahertz applications requiring high integration density. (C)2010 Optical Society of America
引用
收藏
页码:754 / 764
页数:11
相关论文
共 34 条
[1]   Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures [J].
Berini, P .
PHYSICAL REVIEW B, 2000, 61 (15) :10484-10503
[2]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[3]   Terahertz evanescent field microscopy of dielectric materials using on-chip waveguides [J].
Cunningham, J. ;
Byrne, M. ;
Upadhya, P. ;
Lachab, M. ;
Linfield, E. H. ;
Davies, A. G. .
APPLIED PHYSICS LETTERS, 2008, 92 (03)
[4]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[5]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[6]   Guiding terahertz waves along subwavelength channels [J].
Fernandez-Dominguez, A. I. ;
Moreno, Esteban ;
Martin-Moreno, L. ;
Garcia-Vidal, F. J. .
PHYSICAL REVIEW B, 2009, 79 (23)
[7]   Terahertz wedge plasmon polaritons [J].
Fernandez-Dominguez, A. I. ;
Moreno, Esteban ;
Martin-Moreno, L. ;
Garcia-Vidal, F. J. .
OPTICS LETTERS, 2009, 34 (13) :2063-2065
[8]   Surfaces with holes in them:: new plasmonic metamaterials [J].
Garcia-Vidal, FJ ;
Martín-Moreno, L ;
Pendry, JB .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (02) :S97-S101
[9]   Terahertz pulse propagation in a plastic photonic crystal fiber [J].
Han, H ;
Park, H ;
Cho, M ;
Kim, J .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2634-2636
[10]   Ultracompact wavelength and polarization splitters in periodic dielectric waveguides [J].
Huang, Wanwen ;
Zhang, Yao ;
Li, Baojun .
OPTICS EXPRESS, 2008, 16 (03) :1600-1609