Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6

被引:275
作者
Hennig, Thea
Lorenz, Helga
Thiel, Angela
Goetzke, Katrin
Dickhut, Andrea
Geiger, Florian
Richter, Wiltrud
机构
[1] Orthopaed Univ Hosp Heidelberg, Div Expt Orthopaed, D-69118 Heidelberg, Germany
[2] Univ Ulm, Inst Orthopaed Res & Biomech, D-89069 Ulm, Germany
关键词
D O I
10.1002/jcp.20977
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Recent interest has focused on mesenchymal stem cells (MSC) for tissue engineering and regenerative therapy of cartilage defects. MSC originating from adipose tissue (ATSC) are attractive as they are easily available and abundant. They have similar properties like bone marrow derived MSC (BMSC), except for a reduced chondrogenic potential under standard culture conditions driven by TGF beta. Aim of this study was to search for possible differences explaining the reduced differentiation capacity of ATSC and to eliminate it by adaptation of induction protocols. Expanded MSC were analyzed for their growth factor and related receptor repertoire and ATSC spheroid cultures were supplemented with BMP-2,-4,-6,-7, TGF beta, FGFa, FGFb, IGF-I, and PTHrP alone or in combination with TGF beta. In contrast to BMSC, ATSC showed reduced expression of BMP-2, -4, and -6 mRNA and did not express TGF beta-receptor-I protein. Consistent with this, increased concentrations of TGF beta did not improve chondrogenesis of ATSC. BMP6 treatment induced TGF beta-receptor-I expression and combined application of TGF beta and BMP-6 eliminated the reduced chondrogenic potential of ATSC inducing a gene expression profile similar to differentiated BMSC. Like in BMSC, chondrogenesis of ATSC was associated with hypertrophy according to premature collagen Type X expression, upregulation of alkaline-phosphatase activity and in vivo calcification of spheroids after ectopic transplantation in SCID mice. In conclusion, a distinct BMP and TGF beta-receptor repertoire may explain the reduced chondrogenic capacity of ATSC in vitro, which could be compensated by exogenous application of lacking factors. Further studies should now be directed to induce chondrogenesis in the absence of hypertrophy.
引用
收藏
页码:682 / 691
页数:10
相关论文
共 45 条
[1]   Cell differentiation and matrix gene expression in mesenchymal chondrosarcomas [J].
Aigner, T ;
Loos, S ;
Müller, S ;
Sandell, LJ ;
Unni, KK ;
Kirchner, T .
AMERICAN JOURNAL OF PATHOLOGY, 2000, 156 (04) :1327-1335
[2]   Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes [J].
Bai, XW ;
Xia, ZF ;
Pan, YQ ;
Hu, J ;
Pohl, J ;
Wen, JH ;
Li, LS .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 325 (02) :453-460
[3]   Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components [J].
Barry, F ;
Boynton, RE ;
Liu, BS ;
Murphy, JM .
EXPERIMENTAL CELL RESEARCH, 2001, 268 (02) :189-200
[4]   The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105) [J].
Barry, FP ;
Boynton, RE ;
Haynesworth, S ;
Murphy, JM ;
Zaia, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 265 (01) :134-139
[5]   Monoclonal antibodies reactive with human osteogenic cell surface antigens [J].
Bruder, SP ;
Horowitz, MC ;
Mosca, JD ;
Haynesworth, SE .
BONE, 1997, 21 (03) :225-235
[6]   Comparison of multi-lineage cells from human adipose tissue and bone marrow [J].
De Ugarte, DA ;
Morizono, K ;
Elbarbary, A ;
Alfonso, Z ;
Zuk, PA ;
Zhu, M ;
Dragoo, JL ;
Ashjian, P ;
Thomas, B ;
Benhaim, P ;
Chen, I ;
Fraser, J ;
Hedrick, MH .
CELLS TISSUES ORGANS, 2003, 174 (03) :101-109
[7]   Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo [J].
Dell'Accio, F ;
De Bari, C ;
Luyten, FP .
EXPERIMENTAL CELL RESEARCH, 2003, 287 (01) :16-27
[8]  
Dell'Accio F, 2001, ARTHRITIS RHEUM-US, V44, P1608, DOI 10.1002/1529-0131(200107)44:7<1608::AID-ART284>3.0.CO
[9]  
2-T
[10]   A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse [J].
Dennis, JE ;
Merriam, A ;
Awadallah, A ;
Yoo, JU ;
Johnstone, B ;
Caplan, AI .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (05) :700-709