Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis

被引:29
作者
Croker, Ben A. [1 ]
Silke, John [2 ,3 ]
Gerlic, Motti [4 ]
机构
[1] Harvard Univ, Sch Med, Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[2] Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
[3] Univ Melbourne, Dept Med Biol, Parkville, Vic, Australia
[4] Tel Aviv Univ, Sackler Sch Med, Dept Clin Microbiol & Immunol, IL-69978 Tel Aviv, Israel
基金
澳大利亚国家健康与医学研究理事会;
关键词
emergency hematopoiesis; hematopoietic stem and progenitor cells; inflammation; necroptosis; pyroptosis; RECEPTOR-INTERACTING PROTEIN; CYTOMEGALOVIRUS LATENT INFECTION; NLRP3 INFLAMMASOME ACTIVATION; APOPTOTIC CELL-DEATH; BONE-MARROW CELLS; PROGRAMMED NECROSIS; PROGENITOR CELLS; STEM-CELLS; IFN-GAMMA; IN-VIVO;
D O I
10.1097/MOH.0000000000000148
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review A feature of the innate immune response that is conserved across kingdoms is the induction of cell death. In this review, we discuss the direct and indirect effects of increased inflammatory cell death, including pyroptosis - a caspase-1-dependent cell death - and necroptosis - a receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein-dependent, caspase-independent cell death - on emergency hematopoiesis. Recent findings Activation of nonapoptotic cell death pathways during infection can trigger release of cytokines and/or damage-associated molecular patterns such as interleukin (IL)-1 alpha, IL-1 beta, IL-18, IL-33, high-mobility group protein B1, and mitochondrial DNA to promote emergency hematopoiesis. During systemic infection, pyroptosis and necroptosis can directly kill hematopoietic stem and progenitor cells, which results in impaired hematopoiesis, cytopenia, and immunosuppression. Although originally described as discrete entities, there now appear to be more intimate connections between the nonapoptotic and death receptor signaling pathways. Summary The choice to undergo pyroptotic and necroptotic cell death constitutes a rapid response system serving to eliminate infected cells, including hematopoietic stem and progenitor cells. This system has the potential to be detrimental to emergency hematopoiesis during severe infection. We discuss the potential of pharmacological intervention for the pyroptosis and necroptosis pathways that may be beneficial during periods of infection and emergency hematopoiesis.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 107 条
  • [11] Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
    Busch, Katrin
    Klapproth, Kay
    Barile, Melania
    Flossdorf, Michael
    Holland-Letz, Tim
    Schlenner, Susan M.
    Reth, Michael
    Hoefer, Thomas
    Rodewald, Hans-Reimer
    [J]. NATURE, 2015, 518 (7540) : 542 - 546
  • [12] Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis
    Cai, Zhenyu
    Jitkaew, Siriporn
    Zhao, Jie
    Chiang, Hsueh-Cheng
    Choksi, Swati
    Liu, Jie
    Ward, Yvona
    Wu, Ling-gang
    Liu, Zheng-Gang
    [J]. NATURE CELL BIOLOGY, 2014, 16 (01) : 55 - +
  • [13] HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs
    Carter, Christoph C.
    Onafuwa-Nuga, Adewunmi
    McNamara, Lucy A.
    Riddell, James
    Bixby, Dale
    Savona, Michael R.
    Collins, Kathleen L.
    [J]. NATURE MEDICINE, 2010, 16 (04) : 446 - U127
  • [14] Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila
    Case, Christopher L.
    Kohler, Lara J.
    Lima, Jonilson B.
    Strowig, Till
    de Zoete, Marcel R.
    Flavell, Richard A.
    Zamboni, Dario S.
    Roy, Craig R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (05) : 1851 - 1856
  • [15] A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses
    Chan, FKM
    Shisler, J
    Bixby, JG
    Felices, M
    Zheng, LX
    Appel, M
    Orenstein, J
    Moss, B
    Lenardo, MJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (51) : 51613 - 51621
  • [16] Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation
    Cho, YoungSik
    Challa, Sreerupa
    Moquin, David
    Genga, Ryan
    Ray, Tathagat Dutta
    Guildford, Melissa
    Chan, Francis Ka-Ming
    [J]. CELL, 2009, 137 (06) : 1112 - 1123
  • [17] A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
    Coll, Rebecca C.
    Robertson, Avril A. B.
    Chae, Jae Jin
    Higgins, Sarah C.
    Munoz-Planillo, Raul
    Inserra, Marco C.
    Vetter, Irina
    Dungan, Lara S.
    Monks, Brian G.
    Stutz, Andrea
    Croker, Daniel E.
    Butler, Mark S.
    Haneklaus, Moritz
    Sutton, Caroline E.
    Nunez, Gabriel
    Latz, Eicke
    Kastner, Daniel L.
    Mills, Kingston H. G.
    Masters, Seth L.
    Schroder, Kate
    Cooper, Matthew A.
    O'Neill, Luke A. J.
    [J]. NATURE MEDICINE, 2015, 21 (03) : 248 - +
  • [18] RIPK1-and RIPK3-induced cell death mode is determined by target availability
    Cook, W. D.
    Moujalled, D. M.
    Ralph, T. J.
    Lock, P.
    Young, S. N.
    Murphy, J. M.
    Vaux, D. L.
    [J]. CELL DEATH AND DIFFERENTIATION, 2014, 21 (10) : 1600 - 1612
  • [19] Pyroptotic death storms and cytopenia
    Croker, Ben A.
    O'Donnell, Joanne A.
    Gerlic, Motti
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2014, 26 : 128 - 137
  • [20] RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis
    Dannappel, Marius
    Vlantis, Katerina
    Kumari, Snehlata
    Polykratis, Apostolos
    Kim, Chun
    Wachsmuth, Laurens
    Eftychi, Christina
    Lin, Juan
    Corona, Teresa
    Hermance, Nicole
    Zelic, Matija
    Kirsch, Petra
    Basic, Marijana
    Bleich, Andre
    Kelliher, Michelle
    Pasparakis, Manolis
    [J]. NATURE, 2014, 513 (7516) : 90 - +