A classifying algebra for boundary conditions

被引:62
作者
Fuchs, J
Schweigert, C
机构
[1] DESY, D-22603 Hamburg, Germany
[2] CERN, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1016/S0370-2693(97)01180-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a finite-dimensional algebra that controls the possible boundary conditions of a conformal field theory. For theories that are obtained by modding out a Z(2) symmetry (corresponding to a so-called D-odd-type, or half-integer spin simple current, modular invariant), this classifying algebra contains the fusion algebra of the untwisted sector as a subalgebra. Proper treatment of fields in the twisted sector, so-called fixed points, leads to structures that are intriguingly close to the ones implied by modular invariance for conformal field theories on closed orientable surfaces. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 9 条
[1]  
BANTAY P, HEPTH9611124
[2]   BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1989, 324 (03) :581-596
[3]   BULK AND BOUNDARY OPERATORS IN CONFORMAL FIELD-THEORY [J].
CARDY, JL ;
LEWELLEN, DC .
PHYSICS LETTERS B, 1991, 259 (03) :274-278
[4]   A matrix S for all simple current extensions [J].
Fuchs, J ;
Schellekens, AN ;
Schweigert, C .
NUCLEAR PHYSICS B, 1996, 473 (1-2) :323-366
[5]   From Dynkin diagram symmetries to fixed point structures [J].
Fuchs, J ;
Schellekens, B ;
Schweigert, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) :39-97
[6]   SEWING CONSTRAINTS FOR CONFORMAL FIELD-THEORIES ON SURFACES WITH BOUNDARIES [J].
LEWELLEN, DC .
NUCLEAR PHYSICS B, 1992, 372 (03) :654-682
[7]   Completeness conditions for boundary operators in 2D conformal field theory [J].
Pradisi, G ;
Sagnotti, A ;
Stanev, YS .
PHYSICS LETTERS B, 1996, 381 (1-3) :97-104
[8]   THE OPEN DESCENDANTS OF NONDIAGONAL SU(2) WZW MODELS [J].
PRADISI, G ;
SAGNOTTI, A ;
STANEV, YS .
PHYSICS LETTERS B, 1995, 356 (2-3) :230-238
[9]   SIMPLE CURRENTS, MODULAR INVARIANTS AND FIXED-POINTS [J].
SCHELLEKENS, AN ;
YANKIELOWICZ, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (15) :2903-2952