Several high capacitance ordered mesoporous carbon (OMC) materials, containing a bimodal pore distribution, were synthesized directly using hexagonal mesoporous silicas (HMS) as the template material. The HMS templates were formed using amine surfactants (CnH2n+1NH2) with hydrophobic chain lengths containing 8-16 carbons (n = 8-16). These HMS structures were found to have an interconnected wormhole structure, high textural mesoporosity, a surface area ranging from 910 to 1370 m(2)/g, and a total pore volume of 1.09-1.83 cm(3)/g. Also, evidence for a change in structure from hexagonally ordered to layered (for surfactants of chain length with n > 12) was found. The resulting OMCs, formed using sucrose as the carbon precursor, contain bimodal pores 1.6-1.8 and 3.3-3.9 nm in diameter and have a very high surface area (980-1650 m(2)/g). The OMCs were evaluated as electrode materials for electrochemical capacitors using cyclic voltammetry in 0.5 M H2SO4 solution, giving a tunable gravimetric capacitance that increased linearly with BET area (and surfactant chain length), up to 260 F/g, among the highest yet reported for ordered carbon formed from an HMS templated precursor. All OMCs studied in this work displayed a specific capacitance of similar to 0.15 F/m(2). (C) 2009 Published by Elsevier Ltd.