Density matrix interpretation of solutions of Lie-Nambu equations

被引:8
作者
Czachor, M
Marciniak, M
机构
[1] Politech Gdanska, Katedra Fiz Teorety & Metod Matemat, PL-80952 Gdansk, Poland
[2] Univ Gdansk, Inst Matemat, PL-80952 Gdansk, Poland
关键词
D O I
10.1016/S0375-9601(98)00047-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectrum of a density matrix rho(t) is conserved by the Lie-Nambu dynamics if rho(t) is a self-adjoint and Hilbert-Schmidt solution of a nonlinear triple-bracket equation. This generalizes the previous result, which was valid for finite-dimensional Hilbert spaces, to arbitrary separable (positive-and indefinite-metric) Hilbert spaces. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 36 条
[1]   ON A GENERAL CHARACTERIZATION OF NONLINEAR QUANTUM DYNAMIC MAPS [J].
ALICKI, R ;
MAJEWSKI, WA .
PHYSICS LETTERS A, 1990, 148 (1-2) :69-71
[2]  
Ando T., 1986, ASPECTS POSITIVITY F
[3]  
ARVESON W, 1987, CONT MATH, V62, P282
[4]   QUANTUM-MECHANICS AS A GENERALIZATION OF NAMBU DYNAMICS TO THE WEYL-WIGNER FORMALISM [J].
BIALYNICKIBIRULA, I ;
MORRISON, PJ .
PHYSICS LETTERS A, 1991, 158 (09) :453-457
[5]  
Bona P, 1991, PH1091 COM U
[6]   NONLINEAR QUANTUM-MECHANICS IS A CLASSICAL-THEORY [J].
BUGAJSKI, S .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (07) :961-971
[7]  
Czachor M, 1996, ACTA PHYS POL B, V27, P2319
[8]   Nambu-type generalization of the Dirac equation [J].
Czachor, M .
PHYSICS LETTERS A, 1997, 225 (1-3) :1-12
[9]   MOBILITY AND NONSEPARABILITY [J].
CZACHOR, M .
FOUNDATIONS OF PHYSICS LETTERS, 1991, 4 (04) :351-361
[10]   Nonlinear Schrodinger equation and two-level atoms [J].
Czachor, M .
PHYSICAL REVIEW A, 1996, 53 (03) :1310-1315