Density matrix interpretation of solutions of Lie-Nambu equations

被引:8
作者
Czachor, M
Marciniak, M
机构
[1] Politech Gdanska, Katedra Fiz Teorety & Metod Matemat, PL-80952 Gdansk, Poland
[2] Univ Gdansk, Inst Matemat, PL-80952 Gdansk, Poland
关键词
D O I
10.1016/S0375-9601(98)00047-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectrum of a density matrix rho(t) is conserved by the Lie-Nambu dynamics if rho(t) is a self-adjoint and Hilbert-Schmidt solution of a nonlinear triple-bracket equation. This generalizes the previous result, which was valid for finite-dimensional Hilbert spaces, to arbitrary separable (positive-and indefinite-metric) Hilbert spaces. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 36 条
[21]  
GOLDIN GA, 1997, NONLINEAR MATH PHYS, V4, P7
[22]  
JONES KRW, 1997, PHYS APPL MATH ASPEC, V1
[23]   RECONSTRUCTING A NONLINEAR DYNAMICAL FRAMEWORK FOR TESTING QUANTUM-MECHANICS [J].
JORDAN, TF .
ANNALS OF PHYSICS, 1993, 225 (01) :83-113
[24]  
LUCKE W, 1995, NONLINEAR DEFORMED I
[25]   ON COMPLETELY POSITIVE NONLINEAR DYNAMIC SEMIGROUPS [J].
MAJEWSKI, WA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (08) :L359-L361
[26]   GENERALIZED QUANTUM-MECHANICS [J].
MIELNIK, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (03) :221-256
[27]   THEORY OF FILTERS [J].
MIELNIK, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 15 (01) :1-&
[28]  
MIELNIK B, COMMUNICATION
[29]  
Mielnik B., 1968, COMMUN MATH PHYS, V9, P55
[30]   On integrable Doebner-Goldin equations [J].
Nattermann, P ;
Zhdanov, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11) :2869-2886