Scalar curvature of definable CAT-spaces

被引:9
作者
Bernig, A [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
O-MINIMAL STRUCTURES; SETS;
D O I
10.1515/advg.2003.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the scalar curvature measure for sets belonging to o-minimal structures (e.g. semialgebraic or subanalytic sets) from the viewpoint of metric differential geometry. Theorem: Let S be a compact connected definable pseudo-manifold with curvature bounded from above, then the singular part of the scalar curvature measure is non-positive. The topological restrictions cannot be removed, as is shown in examples.
引用
收藏
页码:23 / 43
页数:21
相关论文
共 11 条
[1]  
Bernig A, 2002, ADV GEOM, V2, P29
[2]   Integral geometry of tame sets [J].
Bröcker, L ;
Kuppe, M .
GEOMETRIAE DEDICATA, 2000, 82 (1-3) :285-323
[3]   ON THE CURVATURE OF PIECEWISE FLAT SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :405-454
[4]   CURVATURE MEASURES OF SUBANALYTIC SETS [J].
FU, JHG .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (04) :819-880
[5]   SUBANALYTIC-SET DENSITY [J].
KURDYKA, K ;
RABY, G .
ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) :753-771
[6]   Verdier and strict Thom stratifications in o-minimal structures [J].
Loi, TL .
ILLINOIS JOURNAL OF MATHEMATICS, 1998, 42 (02) :347-356
[7]   SETS AND STRATIFIED MORPHISMS [J].
THOM, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (02) :240-&
[8]   Geometric categories and o-minimal structures [J].
vandenDries, L ;
Miller, C .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (02) :497-540
[9]   On the volume of tubes [J].
Weyl, H .
AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 :461-472
[10]  
[No title captured]