Predictive optimal iterative learning control

被引:174
作者
Amann, N [1 ]
Owens, DH
Rogers, E
机构
[1] Univ Stuttgart, Inst Syst Dynam & Regelungstech, D-70550 Stuttgart, Germany
[2] Univ Exeter, Ctr Syst & Control Engn, Exeter EX4 4QF, Devon, England
[3] Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1080/002071798222794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new optimization-based iterative learning control algorithm is proposed and its properties derived. An important characteristic of this algorithm is that it uses present and future predicted errors to compute the current control, in a similar manner to model-based predictive control using a receding horizon. In particular, it enables the algorithm designer to achieve good control over convergence rate. The actual implementation has a multimodel structure but uses standard linear quadratic regulator methods for a causal formulation (in the iterative learning sense) of what is originally a non-causal algorithm. The results are illustrated by simulations.
引用
收藏
页码:203 / 226
页数:24
相关论文
共 24 条
[1]   Iterative learning control using optimal feedback and feedforward actions [J].
Amann, N ;
Owens, DH ;
Rogers, E .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 65 (02) :277-293
[2]  
Amann N., 1996, THESIS U EXETER
[3]  
AMANN N, 1994, P 2 INT C INT SYST E, P107
[4]  
Anderson B. D. O., OPTIMAL CONTROL LINE
[5]  
[Anonymous], COMMUNICATIONS CONTR
[6]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[7]  
Athans Michael., 1966, OPTIMAL CONTROL
[8]  
BUCHHEIT K, 1994, P IEE INT C CONTR CO, P652
[9]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[10]   PROPERTIES OF GENERALIZED PREDICTIVE CONTROL [J].
CLARKE, DW ;
MOHTADI, C .
AUTOMATICA, 1989, 25 (06) :859-875