Ultra-large-scale syntheses of monodisperse nanocrystals

被引:3546
作者
Park, J
An, KJ
Hwang, YS
Park, JG
Noh, HJ
Kim, JY
Park, JH
Hwang, NM
Hyeon, T [1 ]
机构
[1] Seoul Natl Univ, Natl Creat Res Ctr Oxide Nanocrystalline Mat, Seoul 151744, South Korea
[2] Seoul Natl Univ, Sch Chem Engn, Seoul 151744, South Korea
[3] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Inst Basic Sci, Suwon 440746, South Korea
[5] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[6] Pohang Univ Sci & Technol, Pohang LIght Source, Pohang 790784, South Korea
[7] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea
[8] Seoul Natl Univ, NSI, NCRC, Seoul 151744, South Korea
关键词
D O I
10.1038/nmat1251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of nanocrystals has been intensively pursued, not only for their fundamental scientific interest, but also for many technological applications1-3. The synthesis of monodisperse nanocrystals (size variation <5%) is ofkey importance, because the properties of these nanocrystals depend strongly on their dimensions. For example, the colour sharpness of semiconductor nanocrystal-based optical devices is strongly dependent on the uniformity of the nanocrystals3-6, and monodisperse magnetic nanocrystals are critical for the next-generation multi-terabit magnetic storage media7-9. For these monodisperse nanocrystals to be used, an economical mass-production method needs to be developed. Unfortunately, however, in most syntheses reported so far, only sub-gram quantities of monodisperse nanocrystals were produced. Uniform-sized nanocrystals of CdSe (refs 10,11) and Au (refs 12,13) have been produced using colloidal chemical synthetic procedures. In addition, monodisperse magnetic nanocrystals such as Fe (refs 14,15), Co (refs 16-18), γ-Fe2O3 (refs 19,20), and Fe3O4 (refs 21,22) have been synthesized by using various synthetic methods. Here, we report on the ultra-large-scale synthesis of monodisperse nanocrystals using inexpensive and non-toxic metal salts as reactants. We were able to synthesize as much as 40 g of monodisperse nanocrystals in a single reaction, without a size-sorting process. Moreover, the particle size could be controlled simply by varying the experimental conditions. The current synthetic procedure is very general and nanocrystals of many transition metal oxides were successfully synthesized using a very similar procedure.
引用
收藏
页码:891 / 895
页数:5
相关论文
共 32 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2 [J].
Dumestre, F ;
Chaudret, B ;
Amiens, C ;
Renaud, P ;
Fejes, P .
SCIENCE, 2004, 303 (5659) :821-823
[3]  
Dumestre F, 2002, ANGEW CHEM INT EDIT, V41, P4286, DOI 10.1002/1521-3773(20021115)41:22<4286::AID-ANIE4286>3.0.CO
[4]  
2-M
[5]   Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J].
Hyeon, T ;
Lee, SS ;
Park, J ;
Chung, Y ;
Bin Na, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (51) :12798-12801
[6]   Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals [J].
Hyeon, T ;
Chung, Y ;
Park, J ;
Lee, SS ;
Kim, YW ;
Park, BH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (27) :6831-6833
[7]   Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals [J].
Jana, NR ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (47) :14280-14281
[8]   Generalized and facile synthesis of semiconducting metal sulfide nanocrystals [J].
Joo, J ;
Na, HB ;
Yu, T ;
Yu, JH ;
Kim, YW ;
Wu, FX ;
Zhang, JZ ;
Hyeon, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (36) :11100-11105
[9]   Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals [J].
Joo, J ;
Yu, T ;
Kim, YW ;
Park, HM ;
Wu, FX ;
Zhang, JZ ;
Hyeon, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (21) :6553-6557
[10]   Synthesis of monodisperse palladium nanoparticles [J].
Kim, SW ;
Park, J ;
Jang, Y ;
Chung, Y ;
Hwang, S ;
Hyeon, T ;
Kim, YW .
NANO LETTERS, 2003, 3 (09) :1289-1291