The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways

被引:252
作者
Ulker, Bekir [1 ]
Mukhtar, M. Shahid [1 ]
Somssich, Imre E. [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Abt Mol Phytopathol, D-50829 Cologne, Germany
关键词
Atwrky70; mutants; dark-induced senescence; salicylic acid; signaling crosstalk;
D O I
10.1007/s00425-006-0474-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulatory proteins play critical roles in controlling the kinetics of various cellular processes during the entire life span of an organism. Leaf senescence, an integral part of the plant developmental program, is fine-tuned by a complex transcriptional regulatory network ensuring a successful switch to the terminal life phase. To expand our understanding on how transcriptional control coordinates leaf senescence, we characterized AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence. To gain insight into the interplay of senescence and plant defense signaling pathways, we employed a collection of mutants, allowing us to specifically define the role of AtWRKY70 in the salicylic acid-mediated signaling cascades and to further dissect the cross-talk of signal transduction pathways during the onset of senescence in Arabidopsis thaliana. Our results provide strong evidence that AtWRKY70 influences plant senescence and defense signaling pathways. These studies could form the basis for further unraveling of these two complex interlinked regulatory networks.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 53 条
[1]   Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection [J].
AbuQamar, Synan ;
Chen, Xi ;
Dhawan, Rahul ;
Bluhm, Burton ;
Salmeron, John ;
Lam, Stephen ;
Dietrich, Robert A. ;
Mengiste, Tesfaye .
PLANT JOURNAL, 2006, 48 (01) :28-44
[2]   Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7 [J].
Bartsch, M ;
Gobbato, E ;
Bednarek, P ;
Debey, S ;
Schultze, JL ;
Bautor, J ;
Parker, JE .
PLANT CELL, 2006, 18 (04) :1038-1051
[3]   Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the coi1 mutant of Arabidopsis [J].
Benedetti, CE ;
Costa, CL ;
Turcinelli, SR ;
Arruda, P .
PLANT PHYSIOLOGY, 1998, 116 (03) :1037-1042
[4]   PHYSIOLOGICAL-CHANGES ACCOMPANYING SENESCENCE IN THE EPHEMERAL DAYLILY FLOWER [J].
BIELESKI, RL ;
REID, MS .
PLANT PHYSIOLOGY, 1992, 98 (03) :1042-1049
[5]   Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense [J].
Brodersen, P ;
Petersen, M ;
Pike, HM ;
Olszak, B ;
Skov, S ;
Odum, N ;
Jorgensen, LB ;
Brown, RE ;
Mundy, J .
GENES & DEVELOPMENT, 2002, 16 (04) :490-502
[6]   Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J].
Buchanan-Wollaston, V ;
Page, T ;
Harrison, E ;
Breeze, E ;
Lim, PO ;
Nam, HG ;
Lin, JF ;
Wu, SH ;
Swidzinski, J ;
Ishizaki, K ;
Leaver, CJ .
PLANT JOURNAL, 2005, 42 (04) :567-585
[7]   The molecular analysis of leaf senescence - a genomics approach [J].
Buchanan-Wollaston, V ;
Earl, S ;
Harrison, E ;
Mathas, E ;
Navabpour, S ;
Page, T ;
Pink, D .
PLANT BIOTECHNOLOGY JOURNAL, 2003, 1 (01) :3-22
[8]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Negative regulation of defense responses in plants by a conserved MAPKK kinase [J].
Frye, CA ;
Tang, DZ ;
Innes, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :373-378