A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors

被引:164
作者
Afizah, Hassan [1 ]
Yang, Zheng [1 ]
Hui, James H. P. [1 ]
Ouyang, Hong-Wei [1 ]
Lee, Eng-Hin [1 ]
机构
[1] Natl Univ Singapore, Dept Orthopaed Surg, Fac Med, Singapore 119260, Singapore
来源
TISSUE ENGINEERING | 2007年 / 13卷 / 04期
关键词
D O I
10.1089/ten.2006.0118
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Cartilage damage has been documented as one of the major problems leading to knee repair procedures worldwide. The low availability of cartilage that can be harvested without causing a negative health impact has led to the focus on the potential of stem cells, which have been transplanted into damaged areas and successfully grown into new healthy tissue. This study aims to compare the chondrogenic potential of two stem cell sourcesadipose tissue and bone marrow. Stem cells were isolated from donor-matched adipose tissue and bone marrow, following established protocols. The cells were grown in a chondrogenic cocktail containing transforming growth factor-beta 3 (TGF-beta 3) up till 28 days, and assessed for expression changes of cartilage markers at the gene and protein level, using qualitative and quantitative methods. Controls were included for every time point. Real-time polymerase chain reaction (PCR) results showed increases in the gene expression of collagen II in both the cell types that received TGF-beta 3 treatment. However, histological, immunohistochemical, and glycosaminoglycan (GAG) assay clearly showed that collagen II and proteoglycans (PG) were synthesized only in the growth factortreated bone marrow stem cells (BMSCs). These findings support the results obtained in our in vivo comparative study done on an animal model, suggesting that BMSCs are more suitable than adipose-derived stem cells (ADSCs) for chondrogenesis.
引用
收藏
页码:659 / 666
页数:8
相关论文
共 33 条
[1]   Effects of transforming growth factor β1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells [J].
Awad, HA ;
Halvorsen, YDC ;
Gimble, JM ;
Guilak, F .
TISSUE ENGINEERING, 2003, 9 (06) :1301-1312
[2]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[3]   TGF-BETA-1 PREVENTS HYPERTROPHY OF EPIPHYSEAL CHONDROCYTES - REGULATION OF GENE-EXPRESSION FOR CARTILAGE MATRIX PROTEINS AND METALLOPROTEASES [J].
BALLOCK, RT ;
HEYDEMANN, A ;
WAKEFIELD, LM ;
FLANDERS, KC ;
ROBERTS, AB ;
SPORN, MB .
DEVELOPMENTAL BIOLOGY, 1993, 158 (02) :414-429
[4]   Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components [J].
Barry, F ;
Boynton, RE ;
Liu, BS ;
Murphy, JM .
EXPERIMENTAL CELL RESEARCH, 2001, 268 (02) :189-200
[5]   Comparison of multi-lineage cells from human adipose tissue and bone marrow [J].
De Ugarte, DA ;
Morizono, K ;
Elbarbary, A ;
Alfonso, Z ;
Zuk, PA ;
Zhu, M ;
Dragoo, JL ;
Ashjian, P ;
Thomas, B ;
Benhaim, P ;
Chen, I ;
Fraser, J ;
Hedrick, MH .
CELLS TISSUES ORGANS, 2003, 174 (03) :101-109
[6]   Origin and differentiation of human and murine stroma [J].
Dennis, JE ;
Charbord, P .
STEM CELLS, 2002, 20 (03) :205-214
[7]   Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo [J].
Erickson, GR ;
Gimble, JM ;
Franklin, DM ;
Rice, HE ;
Awad, H ;
Guilak, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 290 (02) :763-769
[8]   Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6 [J].
Estes, BT ;
Wu, AW ;
Guilak, F .
ARTHRITIS AND RHEUMATISM, 2006, 54 (04) :1222-1232
[9]   Adipose-derived adult stem cells: isolation, characterization, and differentiation potential [J].
Gimble, JM ;
Guilak, F .
CYTOTHERAPY, 2003, 5 (05) :362-369
[10]   Clonal analysis of the differentiation potential of human adipose-derived adult stem cells [J].
Guilak, F ;
Lott, KE ;
Awad, HA ;
Cao, QF ;
Hicok, KC ;
Fermor, B ;
Gimble, JM .
JOURNAL OF CELLULAR PHYSIOLOGY, 2006, 206 (01) :229-237