Avoided intersections of nodal lines

被引:24
作者
Monastra, AG [1 ]
Smilansky, U
Gnutzmann, S
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 07期
关键词
D O I
10.1088/0305-4470/36/7/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider real eigenfunctions of the Schrodinger operator in 2D. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains: In contrast, for wavefunctions of non-integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in this work. We define a measure for the avoidance range and compute its distribution for the random wave ensemble. We show that. the avoidance range distribution of wavefunctions of chaotic systems follows the expected random wave distributions, whereas for wavefunctions of classically integrable but quantum non-separable systems, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random wave ensemble.
引用
收藏
页码:1845 / 1853
页数:9
相关论文
共 17 条
[1]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[2]   Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature [J].
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13) :3025-3038
[3]   Nodal structure of chaotic eigenfunctions [J].
Bies, WE ;
Heller, EJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27) :5673-5685
[4]   Nodal domains statistics: A criterion for quantum chaos [J].
Blum, G ;
Gnutzmann, S ;
Smilansky, U .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4-114101
[5]   Percolation model or nodal domains of chaotic wave functions [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[6]  
COURANT R, 1953, METHODS MATH PHYSICS, V1, P451
[7]   NODAL SETS OF EIGENFUNCTIONS ON RIEMANNIAN-MANIFOLDS [J].
DONNELLY, H ;
FEFFERMAN, C .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :161-183
[8]  
Donnelly H., 1990, J AM MATH SOC, V3, P333
[9]  
DONNELLY H, 1992, J GEOM ANAL, V2, P79, DOI DOI 10.1007/BF02921335
[10]  
GRAF JH, 1993, MATH ANN, V43, P142