Fast and slow gating relaxations in the muscle chloride channel CLC-1

被引:90
作者
Accardi, A [1 ]
Pusch, M [1 ]
机构
[1] CNR, Ist Cibernet & Biofis, I-16149 Genoa, Italy
关键词
CLC-0; fast gate; slow gate; double barreled; anion channel;
D O I
10.1085/jgp.116.3.433
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Gating of the muscle chloride channel CLC-1 involves at least two processes evidenced by double-exponential current relaxations when stepping the voltage to negative values. However, there is little information about the gating of CLC-1 at positive voltages. Here, we analyzed macroscopic gating of CLC-1 over a large voltage range (from - 160 to +200 mV). Activation was fast at positive voltages but could be easily followed using envelope protocols that employed a tail pulse to -140 mV after stepping the voltage to a certain test potential for increasing durations. Activation was biexponential, demonstrating the presence of two gating processes. Both time constants became exponentially faster at positive voltages. A similar voltage dependence was also seen for the fast gate time constant of CLC-0. The voltage dependence of the time constant of the fast process of CLC-1, tau(f), was steeper than that of the slow one, tau(s) (apparent activation valences were z(f) similar to -0.79 and z(s) similar to -0.42) such that at +200 mV the two processes became kinetically distinct by almost two orders of magnitude (tau(f) similar to 16 mu s, tau(s) similar to 1 ms). This voltage dependence is inconsistent with a previously published gating model for CLC-1 (Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rudel. 1996. Biophys. J. 71:695-706). The kinetic difference at 200 mV allowed us to separate the steady state open probabilities of the two processes assuming that they reflect two parallel (not necessarily independent) gates that have to be open simultaneously to allow ion conduction. Both open probabilities could be described by Boltzmann functions with gating valences around one and with nonzero "offsets" at negative voltages, indicating that the true "gates" never close completely. For comparison with single channel data and to correlate the two gating processes with the two gates of CLC-0, we characterized their voltage, pH(int), and [Cl](ext) dependence, and the dominant myotonia inducing mutation, I290M. Assuming a double-barreled structure of CLC-1, our results are consistent with the identification of the fast and slow gating processes with die single-pore and the common-pore gate, respectively.
引用
收藏
页码:433 / 444
页数:12
相关论文
共 22 条
[1]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[2]   Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel [J].
Chen, TY ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (04) :237-250
[3]   Subunit stoichiometry of human muscle chloride channels [J].
Fahlke, C ;
Knittle, T ;
Gurnett, CA ;
Campbell, KP ;
George, AL .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (01) :93-104
[4]   Mechanism of voltage-dependent gating in skeletal muscle chloride channels [J].
Fahlke, C ;
Rosenbohm, A ;
Mitrovic, N ;
George, AL ;
Rudel, R .
BIOPHYSICAL JOURNAL, 1996, 71 (02) :695-706
[5]   Pore stoichiometry of a voltage-gated chloride channel [J].
Fahlke, C ;
Rhodes, TH ;
Desai, RR ;
George, AL .
NATURE, 1998, 394 (6694) :687-690
[6]   IMPROVED PATCH-CLAMP TECHNIQUES FOR HIGH-RESOLUTION CURRENT RECORDING FROM CELLS AND CELL-FREE MEMBRANE PATCHES [J].
HAMILL, OP ;
MARTY, A ;
NEHER, E ;
SAKMANN, B ;
SIGWORTH, FJ .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1981, 391 (02) :85-100
[7]   SINGLE CHLORIDE CHANNELS FROM TORPEDO ELECTROPLAX - ACTIVATION BY PROTONS [J].
HANKE, W ;
MILLER, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1983, 82 (01) :25-45
[8]   PRIMARY STRUCTURE OF TORPEDO-MARMORATA CHLORIDE CHANNEL ISOLATED BY EXPRESSION CLONING IN XENOPUS OOCYTES [J].
JENTSCH, TJ ;
STEINMEYER, K ;
SCHWARZ, G .
NATURE, 1990, 348 (6301) :510-514
[9]   THE SKELETAL-MUSCLE CHLORIDE CHANNEL IN DOMINANT AND RECESSIVE HUMAN MYOTONIA [J].
KOCH, MC ;
STEINMEYER, K ;
LORENZ, C ;
RICKER, K ;
WOLF, F ;
OTTO, M ;
ZOLL, B ;
LEHMANNHORN, F ;
GRZESCHIK, KH ;
JENTSCH, TJ .
SCIENCE, 1992, 257 (5071) :797-800
[10]   Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0 [J].
Ludewig, U ;
Jentsch, TJ ;
Pusch, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 498 (03) :691-702