Deciphering ionic current signatures of DNA transport through a nanopore

被引:148
作者
Aksimentiev, Aleksei [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
SINGLE-STRANDED-DNA; STAPHYLOCOCCAL ALPHA-HEMOLYSIN; STEERED MOLECULAR-DYNAMICS; POLYMER TRANSLOCATION; ELECTROPHORETIC MOBILITY; CURRENT RECTIFICATION; STOCHASTIC DETECTION; ELECTRIC-FIELD; PROTEIN PORE; FORCE-FIELD;
D O I
10.1039/b9nr00275h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single-molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across an otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great success, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics- a computational method that can accurately predict the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores.
引用
收藏
页码:468 / 483
页数:16
相关论文
共 182 条
[61]   Multilayered Semiconductor Membranes for Nanopore Ionic Conductance Modulation [J].
Gracheva, Maria E. ;
Melnikov, Dmitriy V. ;
Leburton, Jean-Pierre .
ACS NANO, 2008, 2 (11) :2349-2355
[62]   Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor [J].
Gracheva, ME ;
Xiong, AL ;
Aksimentiev, A ;
Schulten, K ;
Timp, G ;
Leburton, JP .
NANOTECHNOLOGY, 2006, 17 (03) :622-633
[63]   Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force [J].
Grubmuller, H ;
Heymann, B ;
Tavan, P .
SCIENCE, 1996, 271 (5251) :997-999
[64]   Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter [J].
Gu, LQ ;
Braha, O ;
Conlan, S ;
Cheley, S ;
Bayley, H .
NATURE, 1999, 398 (6729) :686-690
[65]   Molecular dynamics studies of the archaeal translocon [J].
Gumbart, J ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2006, 90 (07) :2356-2367
[66]  
HAN A, 2006, APPL PHYS LETT, V88, P3
[67]   The electromechanics of DNA in a synthetic nanopore [J].
Heng, JB ;
Aksimentiev, A ;
Ho, C ;
Marks, P ;
Grinkova, YV ;
Sligar, S ;
Schulten, K ;
Timp, G .
BIOPHYSICAL JOURNAL, 2006, 90 (03) :1098-1106
[68]   Beyond the gene chip [J].
Heng, JB ;
Aksimentiev, A ;
Ho, C ;
Dimitrov, V ;
Sorsch, TW ;
Miner, JF ;
Mansfield, WM ;
Schulten, K ;
Timp, G .
BELL LABS TECHNICAL JOURNAL, 2005, 10 (03) :5-22
[69]   Stretching DNA using the electric field in a synthetic nanopore [J].
Heng, JB ;
Aksimentiev, A ;
Ho, C ;
Marks, P ;
Grinkova, YV ;
Sligar, S ;
Schulten, K ;
Timp, G .
NANO LETTERS, 2005, 5 (10) :1883-1888
[70]   Sizing DNA using a nanometer-diameter pore [J].
Heng, JB ;
Ho, C ;
Kim, T ;
Timp, R ;
Aksimentiev, A ;
Grinkova, YV ;
Sligar, S ;
Schulten, K ;
Timp, G .
BIOPHYSICAL JOURNAL, 2004, 87 (04) :2905-2911